
 the
nder-

ly lan-

pt in
with

in
ge to
 code
with
ame
ere

o-
he
ich pro-

this

and
metic

ents

ates
, and a
 and
ve

e. It
at
 rela-
Assembly Language Style Guide

Style is especially important in assembly code, since you have so much control over
environment. Some conventions must be used so that other people (mostly the TAs) can u
stand what you are doing.It is not the goal of CS31 to teach you to write the fastest assembly
code possible, but instead to teach you how high-level languages can be reduced to assemb
guage instructions.

The coding conventions for cs31 are very much like those for any other CS class, exce
some ways they are more significant. In a high-level language, if you don’t name an instance
an underscore, you can still depend on your code working, and everyone else’s. However,
assembly, if you fail to follow the conventions for register usage, you could do serious dama
other parts of the program. For example, if you write a subroutine called by someone else’s
(okay, I know that no one is going to go out and write MIPS assembly for a living, but work
me), and you use $s registers without saving and restoring them, their code will fail. By the s
token, if you use a $t register, call a subroutine, and expect the value in the register to be th
when the subroutine returns, you might be sadly mistaken.

Commenting

There are a few basic commenting conventions we will watch very closely in your pr
grams. First, every procedure should have a header which contains the procedure name, t
parameters, the return values, the registers used, which procedures call the procedure, wh
cedures this procedure calls, and a brief description of the procedure’s function. Exactly how
header looks is up to you, as long as it contains this information.

All inline comments should be in pseudocode, or C or Java equivalents. We underst
that not every line translates to a line of high-level code, but most control structures and arith
operations can be represented in a high-level way. Also remember to indent your inline comm
as you would lines of pseudocode or a high-level language

Finally, at the top of your program you should have a program header and a list of equ
(constants) with comments. The program header should have your name, account number
description of your program. The equates are similar to constants in a high-level language,
you need to explain what each one is for. Also, the variables in your data section should ha
explanations.

Inline Comments

Your comments should be in pseudocode that corresponds roughly to Java or C cod
should explain what your assembly code is doing by ADDING information. (Don’t just repe
what the line of assembly obviously does.) Give variables meaningful names. Try to show
tionships across lines, not just information contained in a single line.

Example of bad commenting: (this is from the exponentiate function in sample code)

dn’t
not
the

to

t regis-
riable

 lan-
ore
F-
ndi-
com-
e code
hes at
exponentiate:
(stuff deleted)

move $t0, $a0 # $t0 = $a0
move $t1, $a1 # $t1 = $a1
li $t2, 1 # $t2 = 1

powerloop:
beqz $t1, endexponentiate# if $t1 = 0 goto endexponentiate

mul $t2, $t2, $t0 # $t2 = $t2 * $t0
sub $t1, $t1, 1 # $t1 = $t1 - 1
j powerloop

Why is this commenting bad? Two reasons. First, TAs already know MIPS; they woul
be TAing if they didn’t, so telling them that mult $t2, $t2, $t0 is the same as $t2 = $t2 * $t0 is
only uninformative, it is annoying. For an example of good commenting of this subroutine, see
“exponentiate” subroutine in theSample Code section. Keep in mind that you don’t necessarily
have to comment every line of code (you probably shouldn’t). Use your brain. The goal is
communicate, not to overwhelm.

You should break long comments up into several lines (each beginning with a #, of
course). Long lines in the .mal file can cause SPIM to crash.

Register Usage Table

Every subroutine should have a register usage table. A register usage table tells wha
ters are used in a sub, and what they are used for (e.g., if you could give a pseudocode va
name for a register, tell what that name is in the register usage table).

Flow of Control Structures

Control structures are an essential part of structured programming. Since assembly
guage doesn’t have any flow of control structures like Java and C do, you must code the m
complex structures yourself. The simplest flow of control statement is the IF-THEN(-ELSEI
ELSE) statement. For this structure, the most important thing to avoid is a long series of co
tional branch statements in a row followed by sections of code. This would be impossible to
ment. A better structure is to do a comparison, then if the branch is not taken, execute som
and jump to the end of the code block. If the branch is taken, execute some code which finis
the end of the code block. For example:

.
bgt $t0,$t1,bigger # if (t0<=t1) {
. # code if the value is smaller
b endif # }

bigger: # else {
. # code if the value is bigger

endif: # }

com-
e

e note
asion-
y to
ould

f
 spe-
One
ss of
ould
 of that
dure.
level
 when-
eters.)

n calls.

se

calls,

cross

all. It
rite

 and
. #continue with the program

Notice that the comparison (bgt--branch if greater) is the opposite of the commented
parison (if (t0<=t1)). It is often necessary to have this reverse logic in order to make th
comments make sense.

Other loop structures should be set up in a similarly easy to understand manner. On
about while and for loops: all branches which exit these loops should go to one place. Occ
ally, this may mean branching to a branch statement. This is OK. We want code that is eas
read, not code that is completely optimized. Also, all branches to the beginning of the loop sh
go to the same place.

Design

As with other programming classes, design is very important in the implementation o
your programs. Your procedures should be modular and general. They should perform one
cific function and they should error-check and work for a wide variety of parameter values.
important mistake to avoid is accidental use of a ‘global’ variable. You should load the addre
a memory location only once. If you need to use that variable in another procedure, you sh
either pass the address of the variable (passing by reference) or you should pass the value
variable (pass by value.) You should not load the address of the variable in the other proce
(Note that this restriction applies only to variables that would appear as variables in a high-
language. You are permitted, for instance, to load the address of a string you need to print
ever you need to print it; you don’t have to pass around all your string addresses as param

Register Usage

Register usage is an extremely important topic in the style guide. Thea registers should be
used to pass parameters to subroutines and should not be saved on the stack across functio
If you have more than four parameters, you should push the extras on the stack.

Thev registers should contain the return values from the procedures. Obviously, the
should not be saved across function calls.

Thes registers can be used for anything. They should also be saved across procedure
so they have the same values as they started with after a procedure call.You must save all s reg-
isters to the stack that you overwrite in procedure calls, even if you know that they will not
be used elsewhere in your program.

Thet registers should be used for temporary calculations. They should not be saved a
function calls, nor should you expect them to be saved.Note: this includes syscalls as well!

Thera register is a special register that contains the return address after a procedure c
should be saved after every call, just in case you call another procedure which would overw
the ra register with a new return address.

In summary, you should use the following registers, and only the following registers,
you must use them correctly (if you use other registers you will lose credit)

$a0 - $a3 - argument (for passing parameters)
$v0 - $v1 - return value
$t0 - $t9 - temporary registers - not preserved across calls

want
use $t0.
hen
ubrou-
t a $t

r in a $t
ere are

to pass
n 4

saved
at the

ses).

nt to
 This
 vari-
l vari-
 a

If it
Bob’s
$s0 - $s7 - saved registers - preserved across function calls
$sp - stack pointer
$ra - return address

If you want a value to be available after you make a subroutine call,
you should put it in an $s register - and remember that a syscall is a subroutine call!

Always use the first available register - if you have just entered a subroutine, and you
to use a saved register, you should always use $s0 first. If you want a temporary register,
(The point here is that you can’t get away with the following: say I’m in main and I use $s0. T
I call a subroutine. I know that main hasn’t used $s1, so I can save time and use $s1 in my s
tine, and I don’t have to bother saving $s1. ALWAYS save $s registers. NEVER assume tha
register will be valid after a subroutine call).

Never pass parameters in any register besides $a0 - $a3 (i.e., don’t pass a paramete
or $s register). Only pass parameters on the stack if there aren’t enough $a registers (i.e. th
4 $a registers, so if you have 5 parameters, one has to go on the stack)

Steps of a subroutine call (based on Patterson and Hennessy)

What the caller does, when it is ready to call a subroutine:
1. Pass arguments - put arguments in argument registers (registers $a0- $a3 should be used
arguments). If (and ONLY if) the argument registers are not enough (i.e. you have more tha
arguments), push the remaining arguments on the stack.
2. Execute a jal instruction - jumps to callee and saves the return address in ra.

What the callee does when it is called (before doing anything else)
1. Push $ra (return address) onto stack.
2. Push any saved registers the callee will use onto the stack (if a subroutine doesn’t use any
registers, it doesn’t have to save any on the stack, but even if you as the programmer know th
caller didn’t use any saved registers, you still must save any registers that the subroutine u
3. Decrement stack pointer.

What the callee does before it returns (after it is done)
1. If subroutine is a function, put return value into $v0 register.
2. Increment stack pointer.
3. Restore saved registers that were saved at beginning of subroutine.
4. Restore return address to $ra.
5. Register-jump to location in $ra.

Global Variables

In assembly, while every variable is accessable or ’global’ to the entire program you don’t wa
start accessing them from anywhere. Keep in mind that we want well structured assembly.
extends beyond loops and 1-in-1-out constructs. This means that you should restrict using
ables as ’globals’ only for special cases. Basically, the idea is you should never use a globa
able instead of passing something as a parameter to a subroutine. If you think about it from
modeling view a subroutine should know about only what it is told it needs to know about.
needs to know about some data named Bob, the caller should tell it about Bob by passing

ptions

on-

le

 con-
uty.
ing
address instead of the subroutine loading the address of Bob on its own. There are two exce
to this rule.

1. Data that from a modeling point-of-view should be accessable to EVERYONE, such as c
stant strings.

2. Computed constants, because SPIM won’t allow them but any real compiler will:

.eq const1 4

.eq const2 3

.eq const3 const1 * const2

This is not accepted by SPIM but we will allow you to get around it by using a global variab
which you initialize very early in the program.

In case this long-winded theological mumbo-jumbo still leaves doubt in your mind, besides
stant strings we really only want you to use one ’global’ variable during your cs031 tour of d
This mystical beast is the freelist in Asgn3:Questions. Everything else, you should be pass
around like a 3-foot bong at a Phish show.

Sample Code
a program that does meaningless math operations
Note, the main point of this code is to demonstrate good register usage
techniques. For a sample of good commenting of high level control
structures, see the “exponentiate” subroutine

.data

strings to print out messages to the user
first_text:.asciiz“\n Do stuff returned: “
second_text:.asciiz “\n Next result is: “
third_text:.asciiz “\n to the power of “
fourth_text:.asciiz “ is “
fifth_text:.asciiz“ ,times the value returned by dostuff is “
sixth_text:.asciiz“\n Multiply it all together to get: “
newline_string:.asciiz“\n”

.eq print_string 4

.eq print_number 1

.text

__start:

li $t0, 1 # I just need $t0, and $t1

li $t1, 7 # to calculate $s0, so I use temporary register
add $s0, $t0, $t1 # I want to have the

jal dostuff # go to dostuff, it’ll dostuff

move $s1, $v0 # save the return value - I’ll want this later,
so use $s register

la $a0, first_text # print some stuff
jal printstr # a subroutine that makes outputting a bit nicer

move $a0, $s1 # print out the value we calculated before
jal printnum

sub $s2, $s1, $s0 # subtract the two values

la $a0, second_text # print out a string
jal printstr

move $a0, $s2 # print out the result of the subtraction
jal printnum

jal newline # print a newline - another subroutine

li $s3, 5 # get five ready for some operations

move $a0, $s3 # print out base
jal printnum

la $a0, third_text # Print out base string
jal printstr

li $s4, 7 # get seven ready for some operations

move $a0, $s4 # print out exponent
jal printnum

la $a0, fourth_text # print out exponent string
jal printstr

move $a0, $s3 # calculate the 5 to the power of 7
move $a1, $s4
jal exponentiate

move $s3, $v0 # save the returned value - note, I don’t care
about the previous value of $s3 or $s4, so I
can recycle them

move $a0, $s3 # print the result
jal printnum

la $a0, fifth_text # separator string
jal printstr

mul $s4, $s3, $s1 # multiply result be value from dostuff
move $a0, $s4 # print it out
jal printnum

la $a0, sixth_text # print multiply string
jal printstr

mul $s0, $s0, $s1 # compute the new value
mul $s0, $s0, $s2
mul $s0, $s0, $s3

move $a0, $s0 # print the value out
jal printnum

done

#**
dostuff:

sw $ra, 0($sp) # push ra
sw $s0, -4($sp) # save s0
sw $s1, -8($sp) # save s1
sw $s2, -12($sp) # save s2
sub $sp, $sp, 16 # decrement stack pointer

li $s0, 5 # set up some intial values
li $s1, 17
li $s2, -2
add $t0, $s0, $s2
mul $t1, $s2, $s2

move $a0, $t0 # pass parameters -
move $a1, $t1 # exponentiate (x, y)

jal exponentiate

mul $s0, $s0, $v0
mul $s0, $s0, $s1
mul $s0, $s0, $s2

move $v0, $s0 # return the result

add $sp, $sp, 16 # increment stack pointer

lw $s2, -12($sp) # restore s2
lw $s1, -8($sp) # restore s1
lw $s0, -4($sp) # restore s0
lw $ra, 0($sp) # pop ra
jr $ra # return to caller

#**
exponentiate: # exponentiate (baseparam, exponentparam)

#**************
raises baseparam ($a0) to the power of exponentparam ($a1)
#
#
Register usage
$a0 - first param - x (where exponentiate = x to the y)
$a0 - second param - y (where exponentiate = x to the y)

$t0 - number being raised to power - I’m gonna call it the base
$t1 - counter - this is the exponent, see the algorithm I use
$t2 - “accumulator” - it holds the accumulated value of the exponentiation
$v0 - return value - holds the result
#**************

sw $ra, 0($sp) # push ra
sub $sp, $sp, 4 # decrement stack pointer

save parameters
I don’t call any subroutines, so I don’t need $s registers

move $t0, $a0 # base = baseparam
move $t1, $a1 # count = exponentparam
li $t2, 1 # accumulator = ONE (initialize the acc)

powerloop:
beqz $t1, endexponentiate# if(! count = zero) {

mul $t2, $t2, $t0 # accumulator = accumulator * base
sub $t1, $t1, 1 # count = count - 1
j powerloop # }

endexponentiate:

move $v0, $t2 # return accumulator

add $sp, $sp, 4 # increment stack pointer
lw $ra, 0($sp) # pop ra
jr $ra # return to caller

#**

printnum:
sw $ra, 0($sp) # push ra

sub $sp, $sp, 4 # decrement stack pointer

move $a0, $a0
li $v0, print_number
syscall

add $sp, $sp, 4 # increment stack pointer
lw $ra, 0($sp) # pop ra
jr $ra # return to caller

#**

printstr:
sw $ra, 0($sp) # push ra
sub $sp, $sp, 4 # decrement stack pointer

move $a0, $a0
li $v0, print_string
syscall

add $sp, $sp, 4 # increment stack pointer
lw $ra, 0($sp) # pop ra
jr $ra # return to caller

#**

#**

newline:
sw $ra, 0($sp) # push ra
sub $sp, $sp, 4 # decrement stack pointer

la $a0, newline_string
jal printstr

add $sp, $sp, 4 # increment stack pointer
lw $ra, 0($sp) # pop ra
jr $ra # return to caller

	Commenting
	Inline Comments
	Register Usage Table
	Flow of Control Structures
	Design
	Register Usage
	Steps of a subroutine call (based on Patterson and Hennessy)
	Global Variables
	Sample Code

