
 12

 EE371 Assembly Language Coding Standard

The reason for this standard is to insure all embedded firmware meets minimum levels of
readability and maintainability. This standard is tailored for EE371 and a more fully defined development
standard example can be found in A Firmware Development Standard, by The Ganssle Group1 Your
assembly language programs will be graded as part of your lab. To receive full credit your code must
conform to the following standards:

1. Assembly language programs will use the following program style:

Header Comments
All programs must have a header with the date, short description of the program and author's names.
Header comments include:

; Program file name
; Author(s) name(s) (include lab partner)
; Date
; Program purpose
; Revisions
; Other information to help the reader know what the program is supposed to do
; including, perhaps, register and resource use (especially important for subroutines).

Global Symbols
Global symbols are those symbols defined in this module (XDEF) or in another module (XREF)
Example:

XDEF Entry ; Entry point for the program
XREF sub1, sub2 ; Subroutines used

Equates (EQU)
The EQU section defines constants to be used in the program. You should organize this section into
three sub-sections

Constant Equates:
Constants used by the program. All constants must have a comment indicating what the
constant is for.

Debug12 Monitor Equates (if used):
Definition of the vectors for Debug12 monitor routines.

Memory Map Equates:
Definitions of addresses of various parts of the program and for I/O registers.

Constants are important, particularly for constants used in your program.

1 http://www.ganssle.com/fsm.htm

 13

Example:

; Constant Equates
CR EQU $0d ; Carriage return code
LF EQU $0a ; Line feed code
LED_ENAB EQU %00100000 ; Enable bit for LED
; Debug12 Monitor Equates
putchar EQU $fe04 ; Vector for putchar
; Memory Map Equates
REGS: EQU 0 ; Registers base address
PORTP: EQU REGS+$0056 ; Port P address
DDRP: EQU REGS+$0057 ; Data Direction Register

Code Section
The program code is located in the code section:

Example:

MyCode: SECTION

Program Body
Your program goes here. The first instruction in your program must initialize the stack pointer. All
programs must have Adesign@ comments and may have comments on individual instructions.
For programs in the lab, this section should end with the SWI instruction to go back to the monitor.

Constant Data Section
Constant data is to be located immediately following the program code.

Example:

; Constant data definitions
MyConstant: SECTION
MSG DC.B >This is a message=

Variable Data Section
All variable data storage is located in RAM memory:

Example:

; Variable data storage
MyData: SECTION

Variable Data Storage Allocation
Any variable data element must have storage allocated with the Define Storage (DS.B) assembler
directive.

 14

Example:

counter DS.B 1 ; Allocate one byte for a counter

2. Comments in programs shall follow the Rules and Regulations for Comments in Programs.

 See <http://www.coe.montana.edu/ee/courses/ee/ee371/pdffiles/comments.pdf>.

3. All programs are to consist of only SEQUENCEs of logical blocks, IF-THEN-ELSE decisional

elements and REPETITION loops like DO-WHILE or WHILE-DO.

4. A SEQUENCE block must start with a BEGIN comment and end with an END comment.

; BEGIN comments on what the block is to do
Code for the block

; END
(Exception: If the sequential element that the design calls for is implemented with only a few lines
of code, the BEGIN and END comments can be eliminated.)
No branches are allowed from outside the sequence block into the block. Branches within the
block are allowed. Branches to subroutines are allowed.

5. An IF-THEN-ELSE decision block is to be coded

; IF (condition to be tested is true)
Code to test for true
Branch if condition true THEN_PART_n

; ELSE part comments
Code to be done if condition is not true
BRA ENDIF_n

; THEN part comments
THEN_PART_n

Code to be done if condition is true
ENDIF_n

or

; IF (condition to be tested is true)

Code to test for true
Branch if condition not true ELSE_PART_n

; THEN part comments
Code to be done if condition is true

 15

BRA ENDIF_n
; ELSE part comments

Code to be done if condition is not true
ENDIF_n

6. A repetition is to be coded

(DO-WHILE)

; DO comments on what the block is to do
DO_WHILE_n

Code for the block
; WHILE (condition to be tested for true)

Code to test for true
Branch condition true DO_WHILE_n

; END_DO_WHILE_n

or (WHILE-DO)

; WHILE (condition to be tested is true)
WHILE_DO_n

Code to test for true
Branch condition not true END_WHILE_DO_n

; DO comments on what the block is to do
Code for the block
BRA WHILE_DO_n

END_WHILE_DO_n
; END_WHILE_DO

7. Programming modules are to be used. Modules must have headers which describe the function

of the subroutine and all entry and exit requirements for all registers and variable data use.
Subroutine style shall follow the Rules and Regulations for Modules and Subroutines. See
<http://www.coe.montana.edu/ee/courses/ee/ee371/pdffiles/subrules.pdf>.

8. Blocks of code (the span between a BEGIN and END) should be no greater than 50 lines of

code including comment lines.

9. Other miscellaneous rules

a. No magic numbers
b. One input/one output of all blocks
c. Stack pointer must be initialized
d. Program code, constants, and variable data must be located assuming pseudo-rom

 16

($4000-$5FFF) and RAM ($6000-$7FFF) in the EVB.
e No line more than 80 characters.
f. Place labels on lines by themselves.

G:\1wpdocs\univ\dept\courses\Ee371\asm_coding_standard.doc

