

C++ Coding Standards and Guidelines

for EGO

Author EGO-SW

Date 2006-01-27

Version v1r1

Document Nr. EGO-SPE-OPE-75

EGO - European Gravitational Observatory

Traversa H di Via Macerata - Santo Stefano a Macerata, -56021 Cascina, Italia.

Secretariat: Telephone (+39) 050 752 521 FAX (+39) 050 752 550

Change Record

Version Date Section

Affected

Reason / Remarks

v1r1 2006-01-27 All Comments from MEV incorporated

v1r0 2005-06-17 All Format reviewed and codifier added

0.3 2004-08-30 3.2 Example of namespace usage

0.2 2004-07-10 3.7 Added p as prefix to pointer naming

convention.

0.1 2004-06-08 All First Draft

EGO-SPE-OPE-75 Page 3 of 14

1 Table of Contents

1 Table of Contents___ 3

1.1 Purpose___ 4

1.2 Scope __ 4

1.3 Applicable Documents_________________________________ 4

1.4 Reference Documents _________________________________ 4

1.5 Abbreviations and Acronyms____________________________ 4

1.6 Glossary __ 4

2 Class Declarations __ 5

2.1 Class layout ___ 5

3 Naming Conventions ______________________________________ 6

3.1 Class Names___ 6

3.2 Namespaces ___ 6

3.3 Function/Method Names _______________________________ 7

3.4 Function/Method Arguments ____________________________ 7

3.5 Class attribute names __________________________________ 7

3.6 Variables on the stack _________________________________ 8

3.7 Pointer variables______________________________________ 8

3.8 Reference variables and functions returning references________ 8

3.9 Global Variables _____________________________________ 9

3.10 Global Constants, Typedefs, Enumerations _________________ 9

3.11 C Functions __ 10

3.12 File names ___ 10

4 Code formatting ___ 11

4.1 Commenting__ 11

4.2 Indentation and Alignment_____________________________ 12

4.3 Switch Statements ___________________________________ 13

5 General comments _______________________________________ 13

6 Example ___ 14

EGO-SPE-OPE-75 Page 4 of 14

1.1 Purpose

This document provides a minimal set of standards and guidelines for

development in C++. It is not expected to change already existing software

but it is expected to adhere to this standard for any future software

developments.

Adhering to software standards will result in consistency in code, better

quality, easier maintenance and more productive development, especially

when multiple developers are involved.

1.2 Scope

This document describes general guidelines for software development at

EGO as well as standards with respect to naming of files, variables, classes

etc., class declarations as well as comments.

1.3 Applicable Documents

1.4 Reference Documents

1.5 Abbreviations and Acronyms

1.6 Glossary

EGO-SPE-OPE-75 Page 5 of 14

2 Class Declarations

2.1 Class layout

• There should be at most one public, protected and private section in

a class declared in the above order.

• Member functions should be group together.

• Data members and member functions should be grouped separate.

• The default constructor, copy constructor, assignment operator, and

destructor should be either explicitly declared or made inaccessible

and undefined rather than relying on the compiler-generated defaults.

• Use ‘include’ guards in header files to prevent multiple inclusion.

• Class data members must always be private. If access to them is

required then this must be provided through public or protected

member functions.

• Use const whenever possible for function, reference and pointer

parameters, and data member declarations, except where non-

constness is required. Use the mutable keyword to as needed for data,

which is logically but not physically const (for example, read buffers

implemented for efficiency).

• A class’s declaration must expose the logical usage of the class, and

protect or hide its implementation details. The capacity to make the

greatest degree of enhancement and modification with the least

change to class declaration is highly desirable for effective

maintenance, especially for class interfaces exposed in shared

libraries.

EGO-SPE-OPE-75 Page 6 of 14

3 Naming Conventions

Clear and informative names are one of the best tools for creating easily

understandable code. The name of any identifier should describe the purpose

of that identifier.

Use descriptive names and avoid abbreviations except where the

abbreviation is an industry or project standard.

It is recommended that names be a mixture of upper and lowercase letters to

delineate individual words. (e.g. IsMaxOffset() or ClockOutputDevice)

3.1 Class Names

• Class names must identify the type of object they represent. (e.g.

“Message” or “OutputDevice”

• Class names should be prefixed with the package/library to which

they belong. (e.g. LFKalmanFilter where LF is the prefix for Linear

Filtering package)

• Class names of derived classes should be suffixed with the base class.

(e.g. ClockOutputDevice where the class ClockOutputDevice is

derived from the base class OutputDevice)

3.2 Namespaces

• Namespaces must be related to the domain they delimit.

• Namespaces must identify the namespace uniquely.

• Use capitalization for every word in the namespace.

In general, using a namespace in a source file (.cpp) one should make use of

the using directive, thus writing: using namespace std; at the top of the

source file.

When referring to variables in a header file, the scope resolution operator

should be used ::, thus writing namespaces::variable/function.

EGO-SPE-OPE-75 Page 7 of 14

3.3 Function/Method Names

• Function or method names should identify the action performed or the

information provided by the function

• It will generally begin with a verb

• Capitalization is the same for Class names namely every word in the

name must begin with a capital letter. (e.g. IsMaxLimit())

3.4 Function/Method Arguments

• Where more than one argument is passed to a function/method, the

arguments should be listed one per line to improve readability.

Example:

int StartYourEngine(
 Engine& rSomeEngine,
 Engine& rAnotherEngine);

3.5 Class attribute names

• Class attribute names should be prepended with the letter m to

indicate a member or ptr to indicate a pointer to a member.

• After that, use capitalization as for class names.

Example:

int mVarAbc;
int mErrorNumber;
String* mName_ptr;

EGO-SPE-OPE-75 Page 8 of 14

3.6 Variables on the stack

• Any other variables can be defined with the use of underscores (“_”)

and all lower case letters.

• Local variable declarations should be located at the top of the

function, except in cases where doing so limits the scope of the

variable (e.g. inside a loop).

Example:

NameOneTwo::HandleError(int errorNumber)
{

 int error = OsErr();
 Time time_of_error;
 ErrorProcessor error_processor;

}

3.7 Pointer variables

• Pointer variables should be prefixed with the letter “p” or appended

with “_ptr”

• Place the * close to the type and not the variable name

Example:

String* pName = new String;
 String* Name_ptr = new String;

3.8 Reference variables and functions returning

references

• References should be prepended with the letter “r”

EGO-SPE-OPE-75 Page 9 of 14

Example:

class Test
 {
 public:
 void DoSomething(StatusInfo& rStatus);

 StatusInfo& rStatus();
 const StatusInfo& Status() const;

 private:
 StatusInfo& mrStatus;
 StatusInfo* mStatus_ptr;
 }

3.9 Global Variables

• Global variables should be prefixed with the letter “g”.

Example:

ErrorLogger gLog
ErrorLogger* gLog_ptr

3.10 Global Constants, Typedefs, Enumerations

• Macros, enumeration constants and global constant and typedef names

should be stylistically distinguished from class, function, and variable

names.

• Global constants, Enumeration Labels should be all capital letters

separated with “_” and should be prepended with the software

package prefix.

Example:

const int PACKAGE_GLOBAL_CONSTANT = 5;

EGO-SPE-OPE-75 Page 10 of 14

3.11 C Functions

• In a C++ project there should be very few C functions

• Define C functions according to the GNU convention of all lower case

letters delimitated with “_”.

Example:

 int some_function()

 {

 }

3.12 File names

• Header file names should have the extension “.h”.

• C++ Implementation (source) file names should have the extension

“.cpp”.

• File names should contain only alphanumeric characters, “_”

(underscore), “+”, (plus sign), “-“ (minus sign), or “.” (period). Meta-

characters and spaces must be avoided. Also file names that only vary

by case are not permitted.

• Filenames should generally contain the package name as a prefix.

• In general, file names should declare the contained class name.

Example:

 LFKalmanFilter.h
 LFKalmanFilter.cpp

EGO-SPE-OPE-75 Page 11 of 14

4 Code formatting

Good formatted coded aides in readability and understandability, which will

eventually contribute to maintainability, thereby a necessary thing but a

sensitive topic.

Code formatting applies to the way comments are made inside source files,

indentation, and the use of brackets for code blocks.

4.1 Commenting

• All files, both header and source, must begin with the standard header

information, which contains the file identification information, a one

line description of the class, and the copyright notice.

• The header may also contain a longer description of the purpose of the

class and any other pertinent information about the class.

• A change log for each module must be maintained in a manner

appropriate to the development environment. Exactly how this is done

is still to be determined by the development environment chosen.

Currently it is sufficient to provide a package-wide changelog in the

root of the package.

• Block-style and in-line comments are both acceptable.

• Block-style comments should be preceded by an empty line and have

the same indentation as the section of code to which they refer. Block-

style comments should appear at the beginning of the relevant

segment of code. C++ style comments ("//") are preferred.

• Whenever possible automatic generation of documentation via

doxygen should be used.

EGO-SPE-OPE-75 Page 12 of 14

Example:

//

 // comment
 // comment
 //

• Brief comments on the same line as the statement that they describe

are appropriate for the in-line commenting style. There should be at

least 4 spaces between the code and the start of the comment.

Example:

………………… //………………

 ………………… //………………
 ………………… //………………

• Use in-line comments to document variable usage and other small

comments. Block style comments are preferable for describing

computation processes and program flow.

4.2 Indentation and Alignment

Indentation is a very important for aiding readability.

• Rather uses spaces than tabs, as the tabsetting on different editors and

workstations might not be the same.

• Use 2 spaces for every indentation level

• Code blocks should be aligned as such to correspond to the

indentation level.

• Block declarations should be aligned so that every variable name

starts at the same level.

EGO-SPE-OPE-75 Page 13 of 14

Example:

DWORD mDword
DWORD* mDword_ptr

 char* mChar_ptr
 char mChar

4.3 Switch Statements

As C++ does not treat switch-cases as code blocks, and thus the break

statement is a necessity, no indentation should be used. Switch statements

should also use enumerations rather than integers and they should all

implement a default case.

Example:

switch(…)
{
 case FIRST_CASE:
 <code>
 break;

 case SECOND_CASE:
 <code>
 break;

 default:
 <code>
}

5 General comments

• Files longer than 1000 lines should be avoided.

• Avoid very long functions, which may be difficult to comprehend and

maintain. If a function becomes too long, break it into logical chunks

and put each chunk into a function of its own. A function that is more

than 100 lines, including comments and white space, is generally

EGO-SPE-OPE-75 Page 14 of 14

considered to be too long. Some authors recommend that a function

should fit on one screen of your text editor.

• Line length should not exceed 80 characters as telnet interfaces are

sometimes used to deal with code.

• Tricky C or C++ syntax should be avoided; clarity should be

emphasized, rather than emphasizing intricacy or cleverness or brute

conciseness. Conciseness is an admirable goal, but it should not be

allowed to interfere with understandability or maintainability.

• Optimize code only after performance measurement shows where the

time is going. It is easy to incorrectly guess what areas of code are the

bottlenecks.

• White space should be used to group functions, and to group steps of

algorithms within functions.

• Always initialize variables.

6 Example

The SCVS package “apptpl” contains a C++ template application that can be

used as an example case and as a starting point for new developments.

___oOo___

