
C++ Coding Standard
Last Modified: 2000-04-14

tmh@possibility.com / My Home Page

Using this Standard. If you want to make a local copy of this
standard and use it as your own you are perfectly free to do so.
That's why I made it! If you find any errors or make any
improvements please email me the changes so I can merge them in.
Recent Changes.

Contents
Introduction

Standardization is Important❍

Interpretation❍

Standards Enforcement❍

Accepting an Idea❍

6 Phases of a Project (joke)❍

Flow Chart of Project Decision Making (joke)❍

On Leadership❍

●

Resources- Take a Look!
Design Stories❍

Patterns Home Page❍

OO Info Sources❍

Unified Modeling Language (UML)❍

OPEN Method❍

OO FAQ - All You Wanted to Know About OO❍

C++ FAQ - All You Wanted to Know About C++❍

C++ Source Libraries❍

C++ Tutorials❍

ACE C++ Library❍

Collection of Other Standards❍

Design by Contract from Eiffle❍

C++ isn't Perfect, Here are Some Reasons Why❍

ccdoc - is a 'javadoc' like utility that extracts comments and relevant information from your C++/C programs
and generates HTML pages from it.

❍

Const Correctness - A very nice article on const correctness by Chad Loder.❍

Introduction to CRC Cards - A very nice introdction to CRC cards.❍

Abraxis Code Check - A program for checking code for coding standard violations and other problems.❍

●

Names●

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (1 of 62) [10/1/2000 7:24:30 PM]

mailto:tmh@possibility.com
http://www.possibility.com/Tmh
http://www.possibility.com/Cpp/DesignStories.html
http://st-www.cs.uiuc.edu/users/patterns/patterns.html
http://iamwww.unibe.ch/cgi-bin/ooinfo
http://www.rational.com/uml/index.jtmpl
http://www.markv.com/OPEN/
http://www.cyberdyne-object-sys.com/
http://www.cerfnet.com/~mpcline/c++-faq-lite/
http://www.desy.de/user/projects/C++/Projects.html
http://www.desy.de/user/projects/C++/Learning.html
http://www.cs.wustl.edu/~schmidt/ACE-overview.html
http://www.cs.umd.edu/users/cml/cstyle
http://www.eiffel.com/doc/manuals/technology/contract/
http://www.progsoc.uts.edu.au/~geldridg/cpp/cppcv3.html
http://www.joelinoff.com/ccdoc/index.html
http://www.syclus.com/cscene/CS2/CS2-02.html
http://www.abxsoft.com/codchk.htm

Make Names Fit❍

No All Upper Case Abbreviations❍

Class Names❍

Class Library Names❍

Method Names❍

Class Attribute Names❍

Method Argument Names❍

Variable Names on the Stack❍

Pointer Variables❍

Reference Variables and Functions Returning References❍

Global Variables❍

Global Constants❍

Static Variables❍

Type Names❍

Enum Names❍

#define and Macro Names❍

C Function Names❍

C++ File Extensions❍

Documentation
Comments on Comments❍

Comments Should Tell a Story❍

Document Decisions❍

Use Headers❍

Make Gotchas Explicit❍

Interface and Implementation Documentation❍

Directory Documentation❍

Include Statement Documentation❍

Block Comments❍

●

Complexity Management
Layering❍

Minimize Dependencies with Abstract Base Classes❍

Liskov's Substitution Prinicple❍

Open/Closed Principle❍

Register/Dispatch Idiom❍

Delegation❍

Follow the Law of Demeter❍

Design by Contract❍

●

Classes
Naming Class Files❍

●

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (2 of 62) [10/1/2000 7:24:30 PM]

Class Layout❍

Order of public/protected/private?❍

What should go in public/protected/private?❍

Prototype Source File❍

Use of Namespaces❍

Use Header File Guards❍

Required Methods for a Class❍

Method Layout❍

Formating Methods with Multiple Arguments❍

Different Accessor Styles❍

Init Idiom for Initializing Objects❍

Initialize all Variables❍

Minimize Inlines❍

Do Not do Real Work in Object Constructors❍

Be Careful Throwing Exceptions in Destructors❍

Be Const Correct❍

Don't Over Use Operators❍

Thin vs. Fat Class Interfaces❍

Short Methods❍

Process
Use a Design Notation and Process❍

Using Use Cases❍

Unified Modeling Language❍

OPEN Method❍

Code Reviews❍

Create a Source Code Control System Early and Not Often❍

Create a Bug Tracking System Early and Not Often❍

RCS Keyword, Change Log, and History Policy❍

Honor Responsibilities❍

Process Automation❍

Using CRC Cards by Nancy M. Wilkinson❍

●

Formatting
Brace {} Policy❍

Indentation/Tabs/Space Policy❍

Parens () with Key Words and Functions Policy❍

A Line Should Not Exceed 78 Characters❍

If Then Else Formatting❍

switch Formatting❍

Use of goto,continue,break and ?:❍

●

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (3 of 62) [10/1/2000 7:24:30 PM]

One Statement Per Line❍

Alignment of Declaration Blocks❍

Popular Myths
Promise of OO❍

You can't use OO and C++ on Embedded Systems❍

●

Miscellaneous
No Magic Numbers❍

Error Return Check Policy❍

To Use Enums or Not to Use Enums❍

Macros❍

Do Not Default If Test to Non-Zero❍

The Bull of Boolean Types❍

Usually Avoid Embedded Assignments❍

Reusing Your Hard Work and the Hard Work of Others❍

Use Streams❍

Use #if 0 to Comment Out Code Blocks❍

Use #if Not #ifdef❍

Mixing C and C++❍

Alignment of Class Members❍

Miscellaneous❍

No Data Definitions in Header Files❍

●

Portability
Use Typedefs for Types❍

Alignment of Class Members❍

Minimize Inlines❍

Compiler Dependent Exceptions❍

Compiler Dependent RTTI❍

●

Introduction

Standardization is Important
It helps if the standard annoys everyone in some way so everyone feels they are on the same playing field. The proposal
here has evolved over many projects, many companies, and literally a total of many weeks spent arguing. It is no particular
person's style and is certainly open to local amendments.

Good Points

When a project tries to adhere to common standards a few good things happen:

programmers can go into any code and figure out what's going on●

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (4 of 62) [10/1/2000 7:24:30 PM]

new people can get up to speed quickly●

people new to C++ are spared the need to develop a personal style and defend it to the death●

people new to C++ are spared making the same mistakes over and over again●

people make fewer mistakes in consistent environments●

programmers have a common enemy :-)●

Bad Points

Now the bad:

the standard is usually stupid because it was made by someone who doesn't understand C++●

the standard is usually stupid because it's not what I do●

standards reduce creativity●

standards are unnecessary as long as people are consistent●

standards enforce too much structure●

people ignore standards anyway●

Discussion

The experience of many projects leads to the conclusion that using coding standards makes the project go smoother. Are
standards necessary for success? Of course not. But they help, and we need all the help we can get! Be honest, most
arguments against a particular standard come from the ego. Few decisions in a reasonable standard really can be said to be
technically deficient, just matters of taste. So be flexible, control the ego a bit, and remember any project is fundamentally a
team effort.

Interpretation

Conventions

The use of the word "shall" in this document requires that any project using this document must comply with the stated
standard.

The use of the word "should" directs projects in tailoring a project-specific standard, in that the project must include,
exclude, or tailor the requirement, as appropriate.

The use of the word "may" is similar to "should", in that it designates optional requirements.

Terminology

For the sake of simplicity, the use of the word "compiler" means compiler or translator.

"C++ Coding Standard" refers to this document whereas "C++ ANSI Standard" refers to the standard C++ language
definition.

Standards Enforcement
First, any serious concerns about the standard should be brought up and worked out within the group. Maybe the standard is
not quite appropriate for your situation. It may have overlooked important issues or maybe someone in power vehemently
disagrees with certain issues :-)

In any case, once finalized hopefully people will play the adult and understand that this standard is reasonable, and has been
found reasonable by many other programmers, and therefore is worthy of being followed even with personal reservations.

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (5 of 62) [10/1/2000 7:24:30 PM]

Failing willing cooperation it can be made a requirement that this standard must be followed to pass a code inspection.

Failing that the only solution is a massive tickling party on the offending party.

Accepting an Idea
It's impossible.1.

Maybe it's possible, but it's weak and uninteresting.2.

It is true and I told you so.3.

I thought of it first.4.

How could it be otherwise.5.

If you come to objects with a negative preconception please keep an open mind. You may still conclude objects are bunk,
but there's a road you must follow to accept something different. Allow yourself to travel it for a while.

6 Phases of a Project
Enthusiasm1.

Disillusionment2.

Panic3.

A Search for the Guilty4.

The Punishment of the Innocent5.

Praise and Honor for the Non-Participants6.

Flow Chart for Project Decision Making

 +---------+
 | START |
 +---------+
 |
 V
 YES +------------+ NO
 +---------------| DOES THE |---------------+
 | | DAMN THING | |
 V | WORK? | V
+------------+ +------------+ +--------------+ NO
| DON'T FUCK | | DID YOU FUCK |-----+
| WITH IT | | WITH IT? | |
+------------+ +--------------+ |
 | | |
 | | YES |
 | V |
 | +------+ +-------------+ +---------------+ |
 | | HIDE | NO | DOES ANYONE |<------| YOU DUMBSHIT! | |
 | | IT |<----| KNOW? | +---------------+ |
 | +------+ +-------------+ |
 | | | | | | |
 | | V |
 | | +-------------+ +-------------+ |
 | | | YOU POOR | YES | WILL YOU | |

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (6 of 62) [10/1/2000 7:24:30 PM]

 | | | BASTARD |<------| CATCH HELL? |<-----+
 | | +-------------+ +-------------+
 | | | |
 | | | | NO
 | | V V
 | V +-------------+ +------------+
 +-------------->| STOP |<------| SHITCAN IT |
 +-------------+ +------------+

Leadership
I wish i had said this, but it was said by asd@asd.com in comp.software-eng.

Leaders:
lead by example1.

don't ask anything of anyone they wouldn't do themselves2.

are called on to make difficult and unpopular decisions3.

keep the team focused4.

reward/support their team in whatever they do5.

keep/clear unnecessary crap out of the way of the team6.

Consensus is great. If it lasts for the project lifecycle, consider yourself blessed. I've been on a couple projects where two
engineers just blantantly *disagreed*!

#1 " x = 1"
#2 " x != 1"

That's when a Project Leader is required. Unless you want to flip a coin.

Oh yea - one more thing. Project leaders: TAKE the blame when things go wrong and SHARE the credit when things go
right.

Ain't easy - but it's the way I try to run my life.

Names

Make Names Fit
Names are the heart of programming. In the past people believed knowing someone's true name gave them magical power
over that person. If you can think up the true name for something, you give yourself and the people coming after power over
the code. Don't laugh!

A name is the result of a long deep thought process about the ecology it lives in. Only a programmer who understands the
system as a whole can create a name that "fits" with the system. If the name is appropriate everything fits together naturally,
relationships are clear, meaning is derivable, and reasoning from common human expectations works as expected.

If you find all your names could be Thing and DoIt then you should probably revisit your design.

Class Names
Name the class after what it is. If you can't think of what it is that is a clue you have not thought through the design●

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (7 of 62) [10/1/2000 7:24:30 PM]

well enough.

Compound names of over three words are a clue your design may be confusing various entities in your system.
Revisit your design. Try a CRC card session to see if your objects have more responsibilities than they should.

●

Avoid the temptation of bringing the name of the class a class derives from into the derived class's name. A class
should stand on its own. It doesn't matter what it derives from.

●

Suffixes are sometimes helpful. For example, if your system uses agents then naming something DownloadAgent
conveys real information.

●

Method and Function Names

Usually every method and function performs an action, so the name should make clear what it does:
CheckForErrors() instead of ErrorCheck(), DumpDataToFile() instead of DataFile(). This will also make functions
and data objects more distinguishable.

●

Suffixes are sometimes useful:

Max - to mean the maximum value something can have.❍

Cnt - the current count of a running count variable.❍

Key - key value.❍

For example: RetryMax to mean the maximum number of retries, RetryCnt to mean the current retry count.

●

Prefixes are sometimes useful:

Is - to ask a question about something. Whenever someone sees Is they will know it's a question.❍

Get - get a value.❍

Set - set a value.❍

For example: IsHitRetryLimit.

●

No All Upper Case Abbreviations
When confronted with a situation where you could use an all upper case abbreviation instead use an initial upper case
letter followed by all lower case letters. No matter what.

●

Justification

People seem to have very different intuitions when making names containing abbreviations. It's best to settle on one
strategy so the names are absolutely predictable.

Take for example NetworkABCKey. Notice how the C from ABC and K from key are confused. Some people don't
mind this and others just hate it so you'll find different policies in different code so you never know what to call
something.

●

Example

 class FluidOz // NOT FluidOZ
 class NetworkAbcKey // NOT NetworkABCKey

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (8 of 62) [10/1/2000 7:24:30 PM]

Class Names
Use upper case letters as word separators, lower case for the rest of a word●

First character in a name is upper case●

No underbars ('_')●

Justification

Of all the different naming strategies many people found this one the best compromise.●

Example

 class NameOneTwo

 class Name

Class Library Names
Now that name spaces are becoming more widely implemented, name spaces should be used to prevent class name
conflicts among libraries from different vendors and groups.

●

When not using name spaces, it's common to prevent class name clashes by prefixing class names with a unique
string. Two characters is sufficient, but a longer length is fine.

●

Example

John Johnson's complete data structure library could use JJ as a prefix, so classes would be:

 class JjLinkList
 {
 }

Method Names
Use the same rule as for class names.●

Justification

Of all the different naming strategies many people found this one the best compromise.●

Example

 class NameOneTwo
 {
 public:
 int DoIt();
 void HandleError();

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (9 of 62) [10/1/2000 7:24:30 PM]

 }

Class Attribute Names
Attribute names should be prepended with the character 'm'.●

After the 'm' use the same rules as for class names.●

'm' always precedes other name modifiers like 'p' for pointer.●

Justification

Prepending 'm' prevents any conflict with method names. Often your methods and attribute names will be similar,
especially for accessors.

●

Example

 class NameOneTwo
 {
 public:
 int VarAbc();
 int ErrorNumber();
 private:
 int mVarAbc;
 int mErrorNumber;
 String* mpName;
 }

Method Argument Names
The first character should be lower case.●

All word beginnings after the first letter should be upper case as with class names.●

Justification

You can always tell which variables are passed in variables.●

You can use names similar to class names without conflicting with class names.●

Example

 class NameOneTwo
 {
 public:
 int StartYourEngines(
 Engine& rSomeEngine,
 Engine& rAnotherEngine);
 }

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (10 of 62) [10/1/2000 7:24:30 PM]

Variable Names on the Stack
use all lower case letters●

use '_' as the word separator.●

Justification

With this approach the scope of the variable is clear in the code.●

Now all variables look different and are identifiable in the code.●

Example

 int
 NameOneTwo::HandleError(int errorNumber)
 {
 int error= OsErr();
 Time time_of_error;
 ErrorProcessor error_processor;
 }

Pointer Variables
pointers should be prepended by a 'p' in most cases●

place the * close to the pointer type not the variable name●

Justification

The idea is that the difference between a pointer, object, and a reference to an object is important for understanding
the code, especially in C++ where -> can be overloaded, and casting and copy semantics are important.

●

Pointers really are a change of type so the * belongs near the type. One reservation with this policy relates to
declaring multiple variables with the same type on the same line. In C++ the pointer modifier only applies to the
closest variable, not all of them, which can be very confusing, especially for newbies. You want to have one
declaration per line anyway so you can document each variable.

●

Example

 String* pName= new String;

 String* pName, name, address; // note, only pName is a pointer.

Reference Variables and Functions Returning References
References should be prepended with 'r'.●

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (11 of 62) [10/1/2000 7:24:30 PM]

Justification

The difference between variable types is clarified.●

It establishes the difference between a method returning a modifiable object and the same method name returning a
non-modifiable object.

●

Example

 class Test
 {
 public:
 void DoSomething(StatusInfo& rStatus);

 StatusInfo& rStatus();
 const StatusInfo& Status() const;

 private:
 StatusInfo& mrStatus;
 }

Global Variables
Global variables should be prepended with a 'g'.●

Justification

It's important to know the scope of a variable.●

Example

 Logger gLog;
 Logger* gpLog;

Global Constants
Global constants should be all caps with '_' separators.●

Justification

It's tradition for global constants to named this way. You must be careful to not conflict with other global #defines and
enum labels.

Example

 const int A_GLOBAL_CONSTANT= 5;

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (12 of 62) [10/1/2000 7:24:31 PM]

Static Variables
Static variables may be prepended with 's'.●

Justification

It's important to know the scope of a variable.●

Example

 class Test
 {
 public:
 private:
 static StatusInfo msStatus;
 }

Type Names
When possible for types based on native types make a typedef.●

Typedef names should use the same naming policy as for a class with the word Type appended.●

Justification

Of all the different naming strategies many people found this one the best compromise.●

Types are things so should use upper case letters. Type is appended to make it clear this is not a class.●

Example

 typedef uint16 ModuleType;
 typedef uint32 SystemType;

#define and Macro Names
Put #defines and macros in all upper using '_' separators.●

Justification

This makes it very clear that the value is not alterable and in the case of macros, makes it clear that you are using a
construct that requires care.

Some subtle errors can occur when macro names and enum labels use the same name.

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (13 of 62) [10/1/2000 7:24:31 PM]

Example

#define MAX(a,b) blah
#define IS_ERR(err) blah

C Function Names
In a C++ project there should be very few C functions.●

For C functions use the GNU convention of all lower case letters with '_' as the word delimiter.●

Justification

It makes C functions very different from any C++ related names.●

Example

 int
 some_bloody_function()
 {
 }

Enum Names

Labels All Upper Case with '_' Word Separators

This is the standard rule for enum labels.

Example

 enum PinStateType
 {
 PIN_OFF,
 PIN_ON
 }

Enums as Constants without Class Scoping

Sometimes people use enums as constants. When an enum is not embedded in a class make sure you use some sort of
differentiating name before the label so as to prevent name clashes.

Example

 enum PinStateType If PIN was not prepended a conflict
 { would occur as OFF and ON are probably
 PIN_OFF, already defined.
 PIN_ON

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (14 of 62) [10/1/2000 7:24:31 PM]

 };

Enums with Class Scoping

Just name the enum items what you wish and always qualify with the class name: Aclass::PIN_OFF.

Make a Label for an Error State

It's often useful to be able to say an enum is not in any of its valid states. Make a label for an uninitialized or error state.
Make it the first label if possible.

Example

enum { STATE_ERR, STATE_OPEN, STATE_RUNNING, STATE_DYING};

Error Return Check Policy
Check every system call for an error return, unless you know you wish to ignore errors. For example, printf returns an
error code but rarely would you check for its return code. In which case you can cast the return to (void) if you really
care.

●

Include the system error text for every system error message.●

Check every call to malloc or realloc unless you know your versions of these calls do the right thing.●

Required Methods for a Class
To be good citizens almost all classes should implement the following methods. If you don't have to define and implement
any of the "required" methods they should still be represented in your class definition as comments.

Default Constructor

If your class needs a constructor, make sure to provide one. You need one if during the operation of the class it
creates something or does something that needs to be undone when the object dies. This includes creating memory,
opening file descriptors, opening transactions etc.

If the default constructor is sufficient add a comment indicating that the compiler-generated version will be used.

If your default constructor has one or more optional arguments, add a comment indicating that it still functions as the
default constructor.

●

Virtual Destructor

If your class is intended to be derived from by other classes then make the destructor virtual.

●

Copy Constructor

If your class is copyable, either define a copy constructor and assignment operator or add a comment indicating that
the compiler-generated versions will be used.

If your class objects should not be copied, make the copy constructor and assignment operator private and don't
define bodies for them. If you don't know whether the class objects should be copyable, then assume not unless and
until the copy operations are needed.

●

Assignment Operator●

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (15 of 62) [10/1/2000 7:24:31 PM]

If your class is assignable, either define a assignment operator or add a comment indicating that the
compiler-generated versions will be used.

If your objects should not be assigned, make the assignment operator private and don't define bodies for them. If you
don't know whether the class objects should be assignable, then assume not.

Justification
Virtual destructors ensure objects will be completely destructed regardless of inheritance depth. You don't have to use
a virtual destructor when:

You don't expect a class to have descendants.❍

The overhead of virtualness would be too much.❍

An object must have a certain data layout and size.❍

●

A default constructor allows an object to be used in an array.●

The copy constructor and assignment operator ensure an object is always properly constructed.●

Example
The default class template with all required methods. An example using default values:

class Planet
{
public:
 // The following is the default constructor if
 // no arguments are supplied:
 //
 Planet(int radius= 5);

 // Use compiler-generated copy constructor, assignment, and destructor.
 // Planet(const Planet&);
 // Planet& operator=(const Planet&);
 // ~Planet();
};

Braces {} Policy
Of the three major brace placement strategies two are acceptable, with the first one listed being preferable:

Place brace under and inline with keywords:

 if (condition) while (condition)
 { {

 } }

●

Traditional Unix policy of placing the initial brace on the same line as the keyword and the trailing brace inline on its
own line with the keyword:

 if (condition) { while (condition) {

●

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (16 of 62) [10/1/2000 7:24:31 PM]

 } }

Justification
Another religious issue of great debate solved by compromise. Either form is acceptable, many people, however, find
the first form more pleasant. Why is the topic of many psychological studies.

There are more reasons than psychological for preferring the first style. If you use an editor (such as vi) that supports
brace matching, the first is a much better style. Why? Let's say you have a large block of code and want to know
where the block ends. You move to the first brace hit a key and the editor finds the matching brace. Example:

 if (very_long_condition && second_very_long_condition)
 {
 ...
 }
 else if (...)
 {
 ..
 }

To move from block to block you just need to use cursor down and your brace matching key. No need to move to the
end of the line to match a brace then jerk back and forth.

●

Indentation/Tabs/Space Policy
Indent using 3, 4, or 8 spaces for each level.●

Do not use tabs, use spaces. Most editors can substitute spaces for tabs.●

Tabs should be fixed at 8 spaces. Don't set tabs to a different spacing, uses spaces instead.●

Indent as much as needed, but no more. There are no arbitrary rules as to the maximum indenting level. If the
indenting level is more than 4 or 5 levels you may think about factoring out code.

●

Justification
Tabs aren't used because 8 space indentation severely limits the number of indentation levels one can have. The
argument that if this is a problem you have too many indentation levels has some force, but real code can often be
three or more levels deep. Changing a tab to be less than 8 spaces is a problem because that setting is usually local.
When someone prints the source tabs will be 8 characters and the code will look horrible. Same for people using
other editors. Which is why we use spaces...

●

When people using different tab settings the code is impossible to read or print, which is why spaces are preferable to
tabs.

●

Nobody can ever agree on the correct number of spaces, just be consistent. In general people have found 3 or 4
spaces per indentation level workable.

●

As much as people would like to limit the maximum indentation levels it never seems to work in general. We'll trust
that programmers will choose wisely how deep to nest code.

●

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (17 of 62) [10/1/2000 7:24:31 PM]

Example

 void
 func()
 {
 if (something bad)
 {
 if (another thing bad)
 {
 while (more input)
 {
 }
 }
 }
 }

Parens () with Key Words and Functions Policy
Do not put parens next to keywords. Put a space between.●

Do put parens next to function names.●

Do not use parens in return statements when it's not necessary.●

Justification
Keywords are not functions. By putting parens next to keywords keywords and function names are made to look
alike.

●

Example

 if (condition)
 {
 }

 while (condition)
 {
 }

 strcpy(s, s1);

 return 1;

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (18 of 62) [10/1/2000 7:24:31 PM]

RCS Keywords, Change Log, and History Policy
When using RCS directly this policy must change, but when using other source code control systems like CVS that support
RCS style keywords:

Do not use RCS keywords within files.●

Do not keep a change history in files.●

Do not keep author information in files.●

Justification
The reasoning is your source control system already keeps all this information. There is no reason to clutter up source
files with duplicate information that:

makes the files larger❍

makes doing diffs difficult as non source code lines change❍

makes the entry into the file dozens of lines lower in the file which makes a search or jump necessary for each
file

❍

is easily available from the source code control system and does not need embedding in the file❍

●

When files must be sent to other organizations the comments may contain internal details that should not be exposed
to outsiders.

●

Class Layout
A common class layout is critical from a code comprehension point of view and for automatically generating
documentation. C++ programmers, through a new set of tools, can enjoy the same level generated documentation Java
programmers take for granted.

Class and Method Documentation
It is recommended a program like ccdoc be used to document C++ classes, method, variables, functions, and macros. The
documentation can be extracted and put in places in a common area for all programmers to access. This saves programmers
having to read through class headers. Documentation generation should be integrated with the build system where possible.

Template
Please use the following template when creating a new class.

/**
 * A one line description of the class.
 *
 * #include "XX.h"

 * -llib
 *
 * A longer description.
 *
 * @see something
 */

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (19 of 62) [10/1/2000 7:24:31 PM]

http://www.joelinoff.com/ccdoc/index.html

#ifndef XX_h
#define XX_h

// SYSTEM INCLUDES
//

// PROJECT INCLUDES
//

// LOCAL INCLUDES
//

// FORWARD REFERENCES
//

class XX
{
public:
// LIFECYCLE

 /**
 * Default constructor.
 */
 XX(void);

 /**
 * Copy constructor.
 *
 * @param from The value to copy to this object.
 */
 XX(const XX& from);

 /**
 * Destructor.
 */
 ~XX(void);

// OPERATORS

 /**
 * Assignment operator.
 *
 * @param from THe value to assign to this object.
 *
 * @return A reference to this object.
 */
 XX& operator=(XX& from);

// OPERATIONS
// ACCESS
// INQUIRY

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (20 of 62) [10/1/2000 7:24:31 PM]

protected:
private:
};

// INLINE METHODS
//

// EXTERNAL REFERENCES
//

#endif // _XX_h_

Required Methods Placeholders
The template has placeholders for required methods . You can delete them or implement them.

Ordering is: public, protected, private
Notice that the public interface is placed first in the class, protected next, and private last. The reasons are:

programmers should care about a class's interface more than implementation●

when programmers need to use a class they need the interface not the implementation●

It makes sense then to have the interface first. Placing implementation, the private section, first is a historical accident as the
first examples used the private first layout. Over time emphasis has switched deemphasizing a class's interface over
implementation details.

LIFECYCLE
The life cycle section is for methods that control the life cycle of an object. Typically these methods include constructors,
destructors, and state machine methods.

OPERATORS
Place all operators in this section.

OPERATIONS
Place the bulk of a class's non access and inquiry method methods here. A programmer will look here for the meat of a
class's interface.

ACCESS
Place attribute accessors here.

INQUIRY
These are the Is* methods. Whenever you have a question to ask about an object it can be asked via in Is method. For
example: IsOpen() will indicate if the object is open. A good strategy is instead of making a lot of access methods you can
turn them around to be questions about the object thus reducing the exposure of internal structure. Without the IsOpen()

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (21 of 62) [10/1/2000 7:24:31 PM]

method we might have had to do: if (STATE_OPEN == State()) which is much uglier.

What should go in public/protected/private?

Public Section
Only put an object's interface in the public section. DO NOT expose any private data items in the public section. At least
encapsulate access via access methods. Ideally your method interface should make most access methods unnecessary. Do
not put data in the public interface.

Protected and Private Section
What should go into the protected section versus the private section is always a matter of debate.

All Protected

Some say there should be no private section and everything not in the public section should go in the protected section.
After all, we should allow all our children to change anything they wish.

All Private

Another camp says by making the public interface virtual any derived class can change behavior without mucking with
internals.

Wishy Washy

Rationally decide where elements should go and put them there. Not very helpful.

And the Winner Is...

Keeping everything all private seems the easiest approach. By making the public methods virtual flexibility is preserved.

Method Layout
The approach used is to place a comment block before each method that can be extracted by a tool and be made part of the
class documentation. Here we'll use ccdoc which supports the Javadoc format. See the ccdoc documentation for a list of
attributes supported by the document generator.

Method Header

Every parameter should be documented. Every return code should be documented. All exceptions should be documented.
Use complete sentences when describing attributes. Make sure to think about what other resources developers may need and
encode them in with the @see attributes.

 /**
 * Assignment operator.
 *
 * @param val The value to assign to this object.
 *
 * @return A reference to this object.
 */

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (22 of 62) [10/1/2000 7:24:31 PM]

http://www.joelinoff.com/ccdoc/index.html

 XX& operator=(XX& val);

Additional Sections

In addition to the standard attribute set, the following sections can be included in the documentation:

PRECONDITION
Document what must have happened for the object to be in a state where the method can be called.

1.

WARNING
Document anything unusual users should know about this method.

2.

LOCK REQUIRED
Some methods require a semaphore be acquired before using the method. When this is the case use lock required and
specify the name of the lock.

3.

EXAMPLES
Include exampes of how to use a method. A picture says a 1000 words, a good example answers a 1000 questions.

4.

For example:

 /**
 * Copy one string to another.
 *
 * PRECONDITION

 * REQUIRE(from != 0)
 * REQUIRE(to != 0)
 *
 * WARNING

 * The to buffer must be long enough to hold
 * the entire from buffer.
 *
 * EXAMPLES

 *

 * strcpy(somebuf, "test")
 *

 *
 * @param from The string to copy.
 * @param to The buffer to copy the string to.
 *
 * @return void
 */
 void strcpy(const char* from, char* to);

Common Exception Sections

If the same exceptions are being used in a number of methods, then the exceptions can be documented once in the class
header and referred to from the method documentation.

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (23 of 62) [10/1/2000 7:24:31 PM]

Formatting Methods with Multiple Arguments

We should try and make methods have as few parameters as possible. If you find yourself passing the same variables to
every method then that variable should probably be part of the class. When a method does have a lot of parameters format it
like this:

 int AnyMethod(
 int arg1,
 int arg2,
 int arg3,
 int arg4);

Include Statement Documentation
Include statements should be documented, telling the user why a particular file was included. If the file includes a class used
by the class then it's useful to specify a class relationship:

ISA●

HASA●

USES●

Example

#ifndef XX_h
#define XX_h

// SYSTEM INCLUDES
//
#include // standard IO interface
#include // HASA string interface

Notice how the comments for include statements align on the third X.

Block Comments
Use comments on starting and ending a Block:

{
 // Block1 (meaningful comment about Block1)
 ... some code

 {
 // Block2 (meaningful comment about Block2)
 ... some code
 } // End Block2

} // End Block1

This may make block matching much easier to spot when you don't have an intelligent editor.

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (24 of 62) [10/1/2000 7:24:31 PM]

Do Not do Real Work in Object Constructors
Do not do any real work in an object's constructor. Inside a constructor initialize variables only and/or do only actions that
can't fail.

Create an Open() method for an object which completes construction. Open() should be called after object instantiation.

Justification
Constructors can't return an error, object instantiators must check an object for errors after construction. This idiom is
often forgotten.

●

Thrown exceptions inside a constructor can leave an object in an inconsistent state.●

Exceptions are still not widely and reliably implemented so they aren't a solution yet anyway.●

When an object is a member attribute of another object the constructors of the containing object's object can get
called at different times depending on implementation. Assumptions about available services can be violated by these
subtle changes.

●

Note: exceptions are widely implemented now, so this advice may no longer be valid. It is still very difficult to write
exception safe code in the constructor.

●

Example

 class Device
 {
 public:
 Device() { /* initialize and other stuff */ }
 int Open() { return FAIL; }
 };

 Device dev;
 if (FAIL == dev.Open()) exit(1);

Be Careful Throwing Exceptions in Destructors
An object is presumably created to do something. Some of the changes made by an object should persist after an object dies
(is destructed) and some changes should not. Take an object implementing a SQL query. If a database field is updated via
the SQL object then that change should persist after the SQL objects dies. To do its work the SQL object probably created a
database connection and allocated a bunch of memory. When the SQL object dies we want to close the database connection
and deallocate the memory, otherwise if a lot of SQL objects are created we will run out of database connections and/or
memory.

The logic might look like:

Sql::~Sql()
{
 delete connection;
 delete buffer;
}

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (25 of 62) [10/1/2000 7:24:31 PM]

Let's say an exception is thrown while deleting the database connection. Will the buffer be deleted? No. Exceptions are
basically non-local gotos with stack cleanup. The code for deleting the buffer will never be executed creating a gaping
resource leak.

Special care must be taken to catch exceptions which may occur during object destruction. Special care must also be taken
to fully destruct an object when it throws an exception.

Prototype Source File

#include "XX.h" // class implemented

/////////////////////////////// PUBLIC ///////////////////////////////////////

//============================= LIFECYCLE ====================================

XX::XX()
{
}// XX

XX::XX(const XX&)
{
}// XX

XX::~XX()
{
}// ~XX

//============================= OPERATORS ====================================

XX&
XX::operator=(XX&);
{
 return *this;

}// =

//============================= OPERATIONS ===================================
//============================= ACESS ===================================
//============================= INQUIRY ===================================
/////////////////////////////// PROTECTED ///////////////////////////////////

/////////////////////////////// PRIVATE ///////////////////////////////////

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (26 of 62) [10/1/2000 7:24:31 PM]

Use of Namespaces
Namespaces are now commonly implemented by compilers. They should be used if you are sure your compiler supports
them completely. I don't have a lot of experience with C++ namespaces in a project setting so this section is very thin.

Naming Policy
There are two basic strategies for naming: root that name at some naming authority, like the company name and division
name; try and make names globally independent.

Don't Globally Define using
Don't place "using namespace" directive at global scope in a header file. This can cause lots of magic invisible conflicts that
are hard to track. Keep using statements to implementation files.

Make Functions Reentrant
Functions should not keep static variables that prevent a function from being reentrant. Functions can declare variables
static. Some C library functions in the past, for example, kept a static buffer to use a temporary work area. Problems happen
when the function is called one or more times at the same time. This can happen when multiple tasks are used or say from a
signal handler. Using the static buffer caused results to overlap and become corrupted.

The moral is make your functions reentrant by not using static variables in a function. Besides, every machine has 128MB
of RAM now so we don't worry about buffer space any more :-)

To Use Enums or Not to Use Enums
C++ allows constant variables, which should deprecate the use of enums as constants. Unfortunately, in most compilers
constants take space. Some compilers will remove constants, but not all. Constants taking space precludes them from being
used in tight memory environments like embedded systems. Workstation users should use constants and ignore the rest of
this discussion.

In general enums are preferred to #define as enums are understood by the debugger.

Be aware enums are not of a guaranteed size. So if you have a type that can take a known range of values and it is
transported in a message you can't use an enum as the type. Use the correct integer size and use constants or #define.
Casting between integers and enums is very error prone as you could cast a value not in the enum.

A C++ Workaround
C++ allows static class variables. These variables are available anywhere and only the expected amount of space is taken.

Example

class Variables
{

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (27 of 62) [10/1/2000 7:24:31 PM]

public:
 static const int A_VARIABLE;
 static const int B_VARIABLE;
 static const int C_VARIABLE;
}

Use Header File Guards
Include files should protect against multiple inclusion through the use of guards:

#ifndef ClassName_h
#define ClassName_h

#endif // ClassName_h

Replace ClassName with the name of the class contained in the file. Use the exact class name. Some standards say use all
upper case. This is a mistake because someone could actually name a class the same as yours but using all upper letters. If
the files end up be included together one file will prevent the other from being included and you will be one very confused
puppy. It has happened!

Most standards put a leading _ and trailing _. This is no longer valid as the C++ standard reserves leading _ to compiler
writers.

When the include file is not for a class then the file name should be used as the guard name.

A Line Should Not Exceed 78 Characters
Lines should not exceed 78 characters.●

Justification
Even though with big monitors we stretch windows wide our printers can only print so wide. And we still need to
print code.

●

The wider the window the fewer windows we can have on a screen. More windows is better than wider windows.●

We even view and print diff output correctly on all terminals and printers.●

If Then Else Formatting

Layout
It's up to the programmer. Different bracing styles will yield slightly different looks. One common approach is:

 if (condition) // Comment
 {
 }

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (28 of 62) [10/1/2000 7:24:31 PM]

 else if (condition) // Comment
 {
 }
 else // Comment
 {
 }

If you have else if statements then it is usually a good idea to always have an else block for finding unhandled cases. Maybe
put a log message in the else even if there is no corrective action taken.

Condition Format
Always put the constant on the left hand side of an equality/inequality comparison. For example:

if (6 == errorNum) ...

One reason is that if you leave out one of the = signs, the compiler will find the error for you. A second reason is that it puts
the value you are looking for right up front where you can find it instead of buried at the end of your expression. It takes a
little time to get used to this format, but then it really gets useful.

switch Formatting
Falling through a case statement into the next case statement shall be permitted as long as a comment is included.●

The default case should always be present and trigger an error if it should not be reached, yet is reached.●

If you need to create variables put all the code in a block.●

Example

 switch (...)
 {
 case 1:
 ...
 // FALL THROUGH

 case 2:
 {
 int v;
 ...
 }
 break;

 default:
 }

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (29 of 62) [10/1/2000 7:24:31 PM]

Use of goto,continue,break and ?:

Goto
Goto statements should be used sparingly, as in any well-structured code. The goto debates are boring so we won't go into
them here. The main place where they can be usefully employed is to break out of several levels of switch, for, and while
nesting, although the need to do such a thing may indicate that the inner constructs should be broken out into a separate
function, with a success/failure return code.

 for (...)
 {
 while (...)
 {
 ...
 if (disaster)
 goto error;
 }
 }
 ...
error:
 clean up the mess

When a goto is necessary the accompanying label should be alone on a line and to the left of the code that follows. The goto
should be commented (possibly in the block header) as to its utility and purpose.

Continue and Break
Continue and break are really disguised gotos so they are covered here.

Continue and break like goto should be used sparingly as they are magic in code. With a simple spell the reader is beamed
to god knows where for some usually undocumented reason.

The two main problems with continue are:

It may bypass the test condition●

It may bypass the increment/decrement expression●

Consider the following example where both problems occur:

while (TRUE)
{
 ...
 // A lot of code
 ...
 if (/* some condition */) {
 continue;
 }
 ...
 // A lot of code
 ...
 if (i++ > STOP_VALUE) break;
}

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (30 of 62) [10/1/2000 7:24:31 PM]

Note: "A lot of code" is necessary in order that the problem cannot be caught easily by the programmer.

From the above example, a further rule may be given: Mixing continue with break in the same loop is a sure way to disaster.

?:
The trouble is people usually try and stuff too much code in between the ? and :. Here are a couple of clarity rules to follow:

Put the condition in parens so as to set it off from other code●

If possible, the actions for the test should be simple functions.●

Put the action for the then and else statement on a separate line unless it can be clearly put on one line.●

Example

 (condition) ? funct1() : func2();

 or

 (condition)
 ? long statement
 : another long statement;

Alignment of Declaration Blocks
Block of declarations should be aligned.●

Justification
Clarity.●

Similarly blocks of initialization of variables should be tabulated.●

The ‘&’ and ‘*’ tokens should be adjacent to the type, not the name.●

Example

 DWORD mDword
 DWORD* mpDword
 char* mpChar
 char mChar

 mDword = 0;
 mpDword = NULL;
 mpChar = 0;
 mChar = NULL;

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (31 of 62) [10/1/2000 7:24:31 PM]

Macros

Don't Turn C++ into Pascal
Don't change syntax via macro substitution. It makes the program unintelligible to all but the perpetrator.

Replace Macros with Inline Functions
In C++ macros are not needed for code efficiency. Use inlines.

Example

#define MAX(x,y) (((x) > (y) ? (x) : (y)) // Get the maximum

The macro above can be replaced for integers with the following inline function with no loss of efficiency:

 inline int
 max(int x, int y)
 {
 return (x > y ? x : y);
 }

Be Careful of Side Effects
Macros should be used with caution because of the potential for error when invoked with an expression that has side effects.

Example

 MAX(f(x),z++);

Initialize all Variables
You shall always initialize variables. Always. Every time.●

Justification
More problems than you can believe are eventually traced back to a pointer or variable left uninitialized. C++ tends
to encourage this by spreading initialization to each constructor. See Init Idiom for Initializing Objects .

●

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (32 of 62) [10/1/2000 7:24:31 PM]

Init Idiom for Initializing Objects
Objects with multiple constructors and/or multiple attributes should define a private Init() method to initialize all
attributes. If the number of different member variables is small then this idiom may not be a big win and C++'s
constructor initialization syntax can/should be used.

●

Justification
When using C++'s ability to initialize variables in the constructor it's difficult with multiple constructors and/or
multiple attributes to make sure all attributes are initialized. When an attribute is added or changed almost invariably
we'll miss changing a constructor.

It's better to define one method, Init(), that initializes all possible attributes. Init() should be called first from every
constructor.

●

The Init() idiom cannot be used in two cases where initialization from a constructor is required:

constructing a member object❍

initializing a member attribute that is a reference❍

●

Example

 class Test
 {
 public:
 Test()
 {
 Init(); // Call to common object initializer
 }

 Test(int val)
 {
 Init(); // Call to common object initializer
 mVal= val;
 }

 private:
 int mVal;
 String* mpName;

 void Init()
 {
 mVal = 0;
 mpName= 0;
 }
 }

Since the number of member variables is small, this might be better
written as:

 class Test
 {

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (33 of 62) [10/1/2000 7:24:31 PM]

 public:
 Test(int val = 0, String* name = 0)
 : mVal(val), mpName(name) {}
 private:
 int mVal;
 String* mpName;
 };

One Statement Per Line
There should be only one statement per line unless the statements are very closely related.

Short Methods
Methods should limit themselves to a single page of code.●

Justification

The idea is that the each method represents a technique for achieving a single objective.●

Most arguments of inefficiency turn out to be false in the long run.●

True function calls are slower than not, but there needs to a thought out decision (see premature optimization).●

Document Null Statements
Always document a null body for a for or while statement so that it is clear that the null body is intentional and not missing
code.

 while (*dest++ = *src++)
 ; // VOID

Do Not Default If Test to Non-Zero
Do not default the test for non-zero, i.e.

 if (FAIL != f())

is better than

 if (f())

even though FAIL may have the value 0 which C considers to be false. An explicit test will help you out later when
somebody decides that a failure return should be -1 instead of 0. Explicit comparison should be used even if the comparison
value will never change; e.g., if (!(bufsize % sizeof(int))) should be written instead as if ((bufsize % sizeof(int)) == 0) to
reflect the numeric (not boolean) nature of the test. A frequent trouble spot is using strcmp to test for string equality, where

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (34 of 62) [10/1/2000 7:24:31 PM]

the result should never ever be defaulted. The preferred approach is to define a macro STREQ.

 #define STREQ(a, b) (strcmp((a), (b)) == 0)

Or better yet use an inline method:

 inline bool
 StringEqual(char* a, char* b)
 {
 (strcmp(a, b) == 0) ? return true : return false;
 Or more compactly:
 return strcmp(a, b) == 0;
 }

Note, this is just an example, you should really use the standard library string type for doing the comparison.

The non-zero test is often defaulted for predicates and other functions or expressions which meet the following restrictions:

Returns 0 for false, nothing else.●

Is named so that the meaning of (say) a true return is absolutely obvious. Call a predicate IsValid(), not
CheckValid().

●

The Bull of Boolean Types
Any project using source code from many sources knows the pain of multiple conflicting boolean types. The new C++
standard defines a native boolean type. Until all compilers support bool, and existing code is changed to use it, we must still
deal with the cruel world.

The form of boolean most accurately matching the new standard is:

 typedef int bool;
 #define TRUE 1
 #define FALSE 0

or

 const int TRUE = 1;
 const int FALSE = 0;

Note, the standard defines the names true and false not TRUE and FALSE. The all caps versions are used to not clash if the
standard versions are available.

Even with these declarations, do not check a boolean value for equality with 1 (TRUE, YES, etc.); instead test for inequality
with 0 (FALSE, NO, etc.). Most functions are guaranteed to return 0 if false, but only non-zero if true. Thus,

 if (TRUE == func()) { ...

must be written

 if (FALSE != func()) { ...

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (35 of 62) [10/1/2000 7:24:31 PM]

Usually Avoid Embedded Assignments
There is a time and a place for embedded assignment statements. In some constructs there is no better way to accomplish
the results without making the code bulkier and less readable.

 while (EOF != (c = getchar()))
 {
 process the character
 }

The ++ and -- operators count as assignment statements. So, for many purposes, do functions with side effects. Using
embedded assignment statements to improve run-time performance is also possible. However, one should consider the
tradeoff between increased speed and decreased maintainability that results when embedded assignments are used in
artificial places. For example,

 a = b + c;
 d = a + r;

should not be replaced by

 d = (a = b + c) + r;

even though the latter may save one cycle. In the long run the time difference between the two will decrease as the
optimizer gains maturity, while the difference in ease of maintenance will increase as the human memory of what's going on
in the latter piece of code begins to fade.

Reusing Your Hard Work and the Hard Work of
Others
Reuse across projects is almost impossible without a common framework in place. Objects conform to the services
available to them. Different projects have different service environments making object reuse difficult.

Developing a common framework takes a lot of up front design effort. When this effort is not made, for whatever reasons,
there are several techniques one can use to encourage reuse:

Ask! Email a Broadcast Request to the Group
This simple technique is rarely done. For some reason programmers feel it makes them seem less capable if they ask others
for help. This is silly! Do new interesting work. Don't reinvent the same stuff over and over again.

If you need a piece of code email to the group asking if someone has already done it. The results can be surprising.

In most large groups individuals have no idea what other people are doing. You may even find someone is looking for
something to do and will volunteer to do the code for you. There's always a gold mine out there if people work together.

Tell! When You do Something Tell Everyone
Let other people know if you have done something reusable. Don't be shy. And don't hide your work to protect your pride.
Once people get in the habit of sharing work everyone gets better.

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (36 of 62) [10/1/2000 7:24:31 PM]

Don't be Afraid of Small Libraries
One common enemy of reuse is people not making libraries out of their code. A reusable class may be hiding in a program
directory and will never have the thrill of being shared because the programmer won't factor the class or classes into a
library.

One reason for this is because people don't like making small libraries. There's something about small libraries that doesn't
feel right. Get over it. The computer doesn't care how many libraries you have.

If you have code that can be reused and can't be placed in an existing library then make a new library. Libraries don't stay
small for long if people are really thinking about reuse.

If you are afraid of having to update makefiles when libraries are recomposed or added then don't include libraries in your
makefiles, include the idea of services. Base level makefiles define services that are each composed of a set of libraries.
Higher level makefiles specify the services they want. When the libraries for a service change only the lower level
makefiles will have to change.

Keep a Repository
Most companies have no idea what code they have. And most programmers still don't communicate what they have done or
ask for what currently exists. The solution is to keep a repository of what's available.

In an ideal world a programmer could go to a web page, browse or search a list of packaged libraries, taking what they
need. If you can set up such a system where programmers voluntarily maintain such a system, great. If you have a librarian
in charge of detecting reusability, even better.

Another approach is to automatically generate a repository from the source code. This is done by using common class,
method, library, and subsystem headers that can double as man pages and repository entries.

Comments on Comments

Comments Should Tell a Story
Consider your comments a story describing the system. Expect your comments to be extracted by a robot and formed into a
man page. Class comments are one part of the story, method signature comments are another part of the story, method
arguments another part, and method implementation yet another part. All these parts should weave together and inform
someone else at another point of time just exactly what you did and why.

Document Decisions
Comments should document decisions. At every point where you had a choice of what to do place a comment describing
which choice you made and why. Archeologists will find this the most useful information.

Use Headers
Use a document extraction system like ccdoc . Other sections in this document describe how to use ccdoc to document a
class and method.

These headers are structured in such a way as they can be parsed and extracted. They are not useless like normal headers.
So take time to fill them out. If you do it right once no more documentation may be necessary. See Class Layout for more

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (37 of 62) [10/1/2000 7:24:31 PM]

http://www.joelinoff.com/ccdoc/index.html

information.

Comment Layout
Each part of the project has a specific comment layout.

Make Gotchas Explicit
Explicitly comment variables changed out of the normal control flow or other code likely to break during maintenance.
Embedded keywords are used to point out issues and potential problems. Consider a robot will parse your comments
looking for keywords, stripping them out, and making a report so people can make a special effort where needed.

Gotcha Keywords

:TODO: topic
Means there's more to do here, don't forget.

●

:BUG: [bugid] topic
means there's a Known bug here, explain it and optionally give a bug ID.

●

:KLUDGE:
When you've done something ugly say so and explain how you would do it differently next time if you had more
time.

●

:TRICKY:
Tells somebody that the following code is very tricky so don't go changing it without thinking.

●

:WARNING:
Beware of something.

●

:COMPILER:
Sometimes you need to work around a compiler problem. Document it. The problem may go away eventually.

●

:ATTRIBUTE: value
The general form of an attribute embedded in a comment. You can make up your own attributes and they'll be
extracted.

●

Gotcha Formatting

Make the gotcha keyword the first symbol in the comment.●

Comments may consist of multiple lines, but the first line should be a self-containing, meaningful summary.●

The writer's name and the date of the remark should be part of the comment. This information is in the source
repository, but it can take a quite a while to find out when and by whom it was added. Often gotchas stick around
longer than they should. Embedding date information allows other programmer to make this decision. Embedding
who information lets us know who to ask.

●

Example

 // :TODO: tmh 960810: possible performance problem
 // We should really use a hash table here but for now we'll
 // use a linear search.

 // :KLUDGE: tmh 960810: possible unsafe type cast
 // We need a cast here to recover the derived type. It should
 // probably use a virtual method or template.

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (38 of 62) [10/1/2000 7:24:31 PM]

See Also
See Interface and Implementation Documentation for more details on how documentation should be laid out.

Interface and Implementation Documentation
There are two main audiences for documentation:

Class Users●

Class Implementors●

With a little forethought we can extract both types of documentation directly from source code.

Class Users
Class users need class interface information which when structured correctly can be extracted directly from a header file.
When filling out the header comment blocks for a class, only include information needed by programmers who use the
class. Don't delve into algorithm implementation details unless the details are needed by a user of the class. Consider
comments in a header file a man page in waiting.

Class Implementors
Class implementors require in-depth knowledge of how a class is implemented. This comment type is found in the source
file(s) implementing a class. Don't worry about interface issues. Header comment blocks in a source file should cover
algorithm issues and other design decisions. Comment blocks within a method's implementation should explain even more.

Directory Documentation
Every directory should have a README file that covers:

the purpose of the directory and what it contains●

a one line comment on each file. A comment can usually be extracted from the NAME attribute of the file header.●

cover build and install directions●

direct people to related resources:

directories of source❍

online documentation❍

paper documentation❍

design documentation❍

●

anything else that might help someone●

Consider a new person coming in 6 months after every original person on a project has gone. That lone scared explorer
should be able to piece together a picture of the whole project by traversing a source directory tree and reading README
files, Makefiles, and source file headers.

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (39 of 62) [10/1/2000 7:24:31 PM]

Follow the Law of Demeter
The Law of Demeter states that you shouldn't access a contained object directly from the containing object, you should use a
method of the containing object that does what you want and accesses any of its objects as needed.

Justification
The purpose of this law is to break dependencies so implementations can change without breaking code. If an object wishes
to remove one of its contained objects it won't be able to do so because some other object is using it. If instead the service
was through an interface the object could change its implementation anytime without ill effect.

Caveat
As for most laws the Law of Demeter should be ignored in certain cases. If you have a really high level object that contains
a lot of subobjects, like a car contains thousands of parts, it can get absurd to created a method in car for every access to a
subobject.

Example

 class SunWorkstation
 {
 public:
 void UpVolume(int amount) { mSound.Up(amount); }

 SoundCard mSound;

 private:
 GraphicsCard mGraphics;
 }

 SunWorksation sun;

 Do : sun.UpVolume(1);
 Don't: sun.mSound.Up(1);

Minimize Dependencies with Abstract Base
Classes
One of the most important strategies in C++ is to remove dependencies among different subsystems. Abstract base classes
(ABCs) are a solid technique for dependency removal.

An ABC is an abstraction of a common form such that it can be used to build more specific forms. An ABC is a common
interface that is reusable across a broad range of similar classes. By specifying a common interface as long as a class
conforming to that interface is used it doesn't really matter what is the type of the derived type. This breaks code
dependencies. New classes, conforming to the interface, can be substituted in at will without breaking code. In C++

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (40 of 62) [10/1/2000 7:24:31 PM]

interfaces are specified by using base classes with virtual methods.

The above is a bit rambling because it's a hard idea to convey. So let's use an example: We are doing a GUI where things
jump around on the screen. One approach is to do something like:

 class Frog
 {
 public:
 void Jump();
 }
 class Bean
 {
 public:
 void Jump();
 }

The GUI folks could instantiate each object and call the Jump method of each object. The Jump method of each object
contains the implementation of jumping behavior for that type of object. Obviously frogs and beans jump differently even
though both can jump.

Unfortunately the owner of Bean didn't like the word Jump so they changed the method name to Leap. This broke the code
in the GUI and one whole week was lost.

Then someone wanted to see a horse jump so a Horse class was added:

 class Horse
 {
 public:
 void Jump();
 }

The GUI people had to change their code again to add Horse.

Then someone updated Horse so that its Jump behavior was slightly different. Unfortunately this caused a total recompile of
the GUI code and they were pissed.

Someone got the bright idea of trying to remove all the above dependencies using abstract base classes. They made one base
class that specified an interface for jumping things:

 class Jumpable
 {
 public:
 virtual void Jump() = 0;
 }

Jumpable is a base class because other classes need to derive from it so they can get Jumpable's interface. It's an abstract
base class because one or more of its methods has the = 0 notation which means the method is a pure virtual method. Pure
virtual methods must be implemented by derived classes. The compiler checks.

Not all methods in an ABC must be pure virtual, some may have an implementation. This is especially true when creating a
base class encapsulating a process common to a lot of objects. For example, devices that must be opened, diagnostics run,
booted, executed, and then closed on a certain event may create an ABC called Device that has a method called LifeCycle
which calls all other methods in turn thus running through all phases of a device's life. Each device phase would have a pure
virtual method in the base class requiring implementation by more specific devices. This way the process of using a device
is made common but the specifics of a device are hidden behind a common interface.

Back to Jumpable. All the classes were changed to derive from Jumpable:

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (41 of 62) [10/1/2000 7:24:31 PM]

 class Frog : public Jumpable
 {
 public:
 virtual void Jump() { ... }
 }

 etc ...

We see an immediate benefit: we know all classes derived from Jumpable must have a Jump method. No one can go
changing the name to Leap without the compiler complaining. One dependency broken.

Another benefit is that we can pass Jumpable objects to the GUI, not specific objects like Horse or Frog:

 class Gui
 {
 public:
 void MakeJump(Jumpable*);
 }

 Gui gui;
 Frog* pFrog= new Frog;

 gui.MakeJump(pFrog);

Notice Gui doesn't even know it's making a frog jump, it just has a jumpable thing, that's all it cares about. When Gui calls
the Jump method it will get the implementation for Frog's Jump method. Another dependency down. Gui doesn't have to
know what kind of objects are jumping.

We also removed the recompile dependency. Because Gui doesn't contain any Frog objects it will not be recompiled when
Frog changes.

Downside
Wow! Great stuff! Yes but there are a few downsides:

Overhead for Virtual Methods

Virtual methods have a space and time penalty. It's not huge, but should be considered in design.

Make Everything an ABC!

Sometimes people overdo it, making everything an ABC. The rule is make an ABC when you need one not when you might
need one. It takes effort to design a good ABC, throwing in a virtual method doesn't an ABC make. Pick and choose your
spots. When some process or some interface can be reused and people will actually make use of the reuse then make an
ABC and don't look back.

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (42 of 62) [10/1/2000 7:24:31 PM]

Use a Design Notation and Process
Programmers need to have a common language for talking about coding, designs, and the software process in general. This
is critical to project success.

Any project brings together people of widely varying skills, knowledge, and experience. Even if everyone on a project is a
genius you will still fail because people will endlessly talk past each other because there is no common language and
processes binding the project together. All you'll get is massive fights, burnout, and little progress. If you send your group to
training they may not come back seasoned experts but at least your group will all be on the same page; a team.

There are many popular methodologies out there. The point is to do some research, pick a method, train your people on it,
and use it. Take a look at the top of this page for links to various methodologies.

You may find the CRC (class responsibility cards) approach to teasing out a design useful. Many others have. It is an
informal approach encouraging team cooperation and focusing on objects doing things rather than objects having attributes.
There's even a whole book on it: Using CRC Cards by Nancy M. Wilkinson.

Using Use Cases
A use case is a generic description of an entire transaction involving several objects. A use case can also describe the
behaviour of a set of objects, such as an organization. A use case model thus presents a collection of use cases and is
typically used to specify the behavior of a whole application system together with one or more external actors that interact
with the system.

An individual use case may have a name (although it is typically not a simple name). Its meaning is often written as an
informal text description of the external actors and the sequences of events between objects that make up the transaction.
Use cases can include other use cases as part of their behaviour.

Requirements Capture
Use cases attempt to capture the requirements for a system in an understandable form. The idea is by running through a set
of use case we can verify that the system is doing what it should be doing.

Have as many use cases as needed to describe what a system needs to accomplish.

The Process
Start by understanding the system you are trying to build.●

Create a set of use cases describing how the system is to be used by all its different audiences.●

Create a class and object model for the system.●

Run through all the use cases to make sure your model can handle all the cases. Update your model and create new
use cases as necessary.

●

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (43 of 62) [10/1/2000 7:24:31 PM]

Unified Modeling Language
The Unified Modeling Language is too large to present here. Fortunately you can see it at Rational's web site. Since you do
need a modeling language UML is a safe choice. It combines features from several methods into one unified language.
Remember all languages and methods are open to local customization. If their language is too complex then use the parts
you and your project feel they need and junk the rest.

OPEN Method
OPEN stands for Object-oriented Process, Environment and Notation and is a worthy if not superior competitor to
UML. It is another group effort composed of basically all the people not in the UML group :-) Their web site has a good
comparison of OPEN and UML.

My guess is UML will win out for marketing reasons. But it is good to have some competition going.

Liskov's Substitution Principle (LSP)
This principle states:

 All classes derived from a base class should be interchangeable
 when used as a base class.

The idea is users of a class should be able to count on similar behavior from all classes that derive from a base class. No
special code should be necessary to qualify an object before using it. If you think about it violating LSP is also violating the
Open/Closed principle because the code would have to be modified every time a derived class was added. It's also related to
dependency management using abstract base classes.

For example, if the Jump method of a Frog object implementing the Jumpable interface actually makes a call and orders
pizza we can say its implementation is not in the spirit of Jump and probably all other objects implementing Jump. Before
calling a Jump method a programmer would now have to check for the Frog type so it wouldn't screw up the system. We
don't want this in programs. We want to use base classes and feel comfortable we will get consistent behaviour.

LSP is a very restrictive idea. It constrains implementors quite a bit. In general people support LSP and have LSP as a goal.

Open/Closed Principle
The Open/Closed principle states a class must be open and closed where:

open means a class has the ability to be extended.●

closed means a class is closed for modifications other than extension. The idea is once a class has been approved for
use having gone through code reviews, unit tests, and other qualifying procedures, you don't want to change the class
very much, just extend it.

●

The Open/Closed principle is a pitch for stability. A system is extended by adding new code not by changing already
working code. Programmers often don't feel comfortable changing old code because it works! This principle just gives you
an academic sounding justification for your fears :-)

In practice the Open/Closed principle simply means making good use of our old friends abstraction and polymorphism.

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (44 of 62) [10/1/2000 7:24:31 PM]

http://www.rational.com/ot/uml.html
http://www.markv.com/OPEN/

Abstraction to factor out common processes and ideas. Inheritance to create an interface that must be adhered to by derived
classes. In C++ we are talking about using abstract base classes . A lot.

Design by Contract
The idea of design by contract is strongly related to LSP . A contract is a formal statement of what to expect from another
party. In this case the contract is between pieces of code. An object and/or method states that it does X and you are
supposed to believe it. For example, when you ask an object for its volume that's what you should get. And because volume
is a verifiable attribute of a thing you could run a series of checks to verify volume is correct, that is, it satisfies its contract.

The contract is enforced in languages like Eiffel by pre and post condition statements that are actually part of the language.
In other languages a bit of faith is needed.

Design by contract when coupled with language based verification mechanisms is a very powerful idea. It makes
programming more like assembling spec'd parts.

Don't Over Use Operators
C++ allows the overloading of all kinds of weird operators. Unless you are building a class directly related to math there are
very few operators you should override. Only override an operator when the semantics will be clear to users.

Justification
Very few people will have the same intuition as you about what a particular operator will do.●

Naming Class Files

Class Definition in One File
Each class definition should be in its own file where each file is named directly after the class's name:

 ClassName.h

Implementation in One File
In general each class should be implemented in one source file:

 ClassName.cc // or whatever the extension is: cpp, c++

But When it Gets Really Big...
If the source file gets too large or you want to avoid compiling templates all the time then add additional files named
according to the following rule:

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (45 of 62) [10/1/2000 7:24:31 PM]

 ClassName_section.C

section is some name that identifies why the code is chunked together. The class name and section name are separated by
'_'.

Miscellaneous
This section contains some miscellaneous do's and don'ts.

Don't use floating-point variables where discrete values are needed. Using a float for a loop counter is a great way to
shoot yourself in the foot. Always test floating-point numbers as <= or >=, never use an exact comparison (== or !=).

●

Compilers have bugs. Common trouble spots include structure assignment and bit fields. You cannot generally
predict which bugs a compiler has. You could write a program that avoids all constructs that are known broken on all
compilers. You won't be able to write anything useful, you might still encounter bugs, and the compiler might get
fixed in the meanwhile. Thus, you should write ``around'' compiler bugs only when you are forced to use a particular
buggy compiler.

●

Do not rely on automatic beautifiers. The main person who benefits from good program style is the programmer
him/herself, and especially in the early design of handwritten algorithms or pseudo-code. Automatic beautifiers can
only be applied to complete, syntactically correct programs and hence are not available when the need for attention to
white space and indentation is greatest. Programmers can do a better job of making clear the complete visual layout
of a function or file, with the normal attention to detail of a careful programmer (in other words, some of the visual
layout is dictated by intent rather than syntax and beautifiers cannot read minds). Sloppy programmers should learn to
be careful programmers instead of relying on a beautifier to make their code readable. Finally, since beautifiers are
non-trivial programs that must parse the source, a sophisticated beautifier is not worth the benefits gained by such a
program. Beautifiers are best for gross formatting of machine-generated code.

●

Accidental omission of the second ``='' of the logical compare is a problem. The following is confusing and prone to
error.

 if (abool= bbool) { ... }

Does the programmer really mean assignment here? Often yes, but usually no. The solution is to just not do it, an
inverse Nike philosophy. Instead use explicit tests and avoid assignment with an implicit test. The recommended
form is to do the assignment before doing the test:

 abool= bbool;
 if (abool) { ... }

●

Modern compilers will put variables in registers automatically. Use the register sparingly to indicate the variables that
you think are most critical. In extreme cases, mark the 2-4 most critical values as register and mark the rest as
REGISTER. The latter can be #defined to register on those machines with many registers.

●

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (46 of 62) [10/1/2000 7:24:31 PM]

Be Const Correct
C++ provides the const key word to allow passing as parameters objects that cannot change to indicate when a method
doesn't modify its object. Using const in all the right places is called "const correctness." It's hard at first, but using const
really tightens up your coding style. Const correctness grows on you.

For more information see Const Correctness in the C++ FAQ.

Use Streams
Programmers transitioning from C to C++ find stream IO strange preferring the familiarity of good old stdio. Printf and
gang seem to be more convenient and are well understood.

Type Safety
Stdio is not type safe, which is one of the reasons you are using C++, right? Stream IO is type safe. That's one good reason
to use streams.

Standard Interface
When you want to dump an object to a stream there is a standard way of doing it: with the << operator. This is not true of
objects and stdio.

Interchangeablity of Streams
One of the more advanced reasons for using streams is that once an object can dump itself to a stream it can dump itself to
any stream. One stream may go to the screen, but another stream may be a serial port or network connection. Good stuff.

Streams Got Better
Stream IO is not perfect. It is however a lot better than it used to be. Streams are now standardized, acceptably efficient,
more reliable, and now there's lots of documentation on how to use streams.

Check Thread Safety
Some stream implementations are not yet thread safe. Make sure that yours is.

But Not Perfect
For an embedded target tight on memory streams do not make sense. Streams inline a lot of code so you might find the
image larger than you wish. Experiment a little. Streams might work on your target.

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (47 of 62) [10/1/2000 7:24:31 PM]

Use #if Not #ifdef
Use #if MACRO not #ifdef MACRO. Someone might write code like:

#ifdef DEBUG
 temporary_debugger_break();
#endif

Someone else might compile the code with turned-of debug info like:

cc -c lurker.cpp -DDEBUG=0

Alway use #if, if you have to use the preprocessor. This works fine, and does the right thing, even if DEBUG is not defined
at all (!)

#if DEBUG
 temporary_debugger_break();
#endif

If you really need to test whether a symbol is defined or not, test it with the defined() construct, which allows you to add
more things later to the conditional without editing text that's already in the program:

#if !defined(USER_NAME)
 #define USER_NAME "john smith"
#endif

Use #if 0 to Comment Out Code Blocks
Sometimes large blocks of code need to be commented out for testing. The easiest way to do this is with an #if 0 block:

 void
 example()
 {
 great looking code

 #if 0
 lots of code
 #endif

 more code
 }

You can't use /**/ style comments because comments can't contain comments and surely a large block of your code will
contain a comment, won't it?

Don't use #ifdef as someone can unknowingly trigger ifdefs from the compiler command line.

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (48 of 62) [10/1/2000 7:24:31 PM]

Register/Dispatch Idiom
Another strategy for reducing dependencies in a system is the Register/Dispatch Idiom (RDI). RDI treats large grained
occurrences in a system as events. Events are identified by some unique identifier. Objects in the system register with a
dispatch system for events or classes of events it is interested in. Objects that are event sources send events into the dispatch
system so the dispatch system can route events to consumers.

RDI separates producers and consumers on a distributed scale. Event producers and consumers don't have to know about
each other at all. Consumers can drop out of the event stream by deregistering for events. New consumers can register for
events at anytime. Event producers can drop out with no ill effect to event consumers, the consumer just won't get any more
events. It is a good idea for producers to have an "I'm going down event" so consumers can react intelligently.

Logically the dispatch system is a central entity. The implementation however can be quite different. For a highly
distributed system a truly centralized event dispatcher would be a performance bottleneck and a single point of failure.
Think of event dispatchers as being a lot of different processes cast about on various machines for redundancy purposes.
Event processors communicate amongst each other to distribute knowledge about event consumers and producers. Much
like a routing protocol distributes routing information to its peers.

RDI works equally well in the small, in processes and single workstations. Parts of the system can register as event
consumers and event producers making for a very flexible system. Complex decisions in a system are expressed as event
registrations and deregistrations. No further level of cooperation required.

More expressive event filters can also be used. The above proposal filters events on some unique ID. Often you want events
filtered on more complex criteria, much like a database query. For this to work the system has to understand all data
formats. This is easy if you use a common format like attribute value pairs. Otherwise each filter needs code understanding
packet formats. Compiling in filter code to each dispatcher is one approach. Creating a downloadable generic stack based
filter language has been used with success on other projects, being both simple and efficient.

Different Accessor Styles

Why Accessors?
Access methods provide access to the physical or logical attributes of an object. Accessing an object's attributes directly as
we do for C structures is greatly discouraged in C++. We disallow direct access to attributes to break dependencies, the
reason we do most things. Directly accessing an attribute exposes implementation details about the object.

To see why ask yourself:

What if the object decided to provide the attribute in a way other than physical containment?●

What if it had to do a database lookup for the attribute?●

What if a different object now contained the attribute?●

If any of the above changed code would break. An object makes a contract with the user to provide access to a particular
attribute; it should not promise how it gets those attributes. Accessing a physical attribute makes such a promise.

Accessors Considered Somewhat Harmful
At least in the public interface having accessors many times is an admission of failure, a failure to make an object's interface
complete. At the protected or private level accessors are fine as these are the implementation levels of a class.

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (49 of 62) [10/1/2000 7:24:31 PM]

Implementing Accessors
There are three major idioms for creating accessors.

Get/Set

 class X
 {
 public:
 int GetAge() const { return mAge; }
 void SetAge(int age) { mAge= age; }
 private:
 int mAge;
 }

The problem with Get/Set is twofold:

It's ugly. Get and Set are strewn throughout the code cluttering it up.●

It doesn't treat attributes as objects in their own right. An object will have an assignment operator. Why shouldn't age
be an object and have its own assignment operator?

●

One benefit, that it shares with the One Method Name, is when used with messages the set method can transparently
transform from native machine representations to network byte order.

One Method Name

 class X
 {
 public:
 int Age() const { return mAge; }
 void Age(int age) { mAge= age; }
 private:
 int mAge;
 }

Similar to Get/Set but cleaner. Use this approach when not using the Attributes as Objects approach.

Attributes as Objects

 class X
 {
 public:
 int Age() const { return mAge; }
 int& rAge() { return mAge; }

 const String& Name() const { return mName; }
 String& rName() { return mName; }
 private:
 int mAge;
 String mName;
 }

The above two attribute examples shows the strength and weakness of the Attributes as Objects approach.

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (50 of 62) [10/1/2000 7:24:31 PM]

When using an int type, which is not a real object, the int is set directly because rAge() returns a reference. The object can
do no checking of the value or do any representation reformatting. For many simple attributes, however, these are not
horrible restrictions. A way around this problem is to use a class wrapper around base types like int.

When an object is returned as reference its = operator is invoked to complete the assignment. For example:

 X x;
 x.rName()= "test";

This approach is also more consistent with the object philosophy: the object should do it. An object's = operator can do all
the checks for the assignment and it's done once in one place, in the object, where it belongs. It's also clean from a name
perspective.

When possible use this approach to attribute access.

Layering
Layering is the primary technique for reducing complexity in a system. A system should be divided into layers. Layers
should communicate between adjacent layers using well defined interfaces. When a layer uses a non-adjacent layer then a
layering violation has occurred.

A layering violation simply means we have dependency between layers that is not controlled by a well defined interface.
When one of the layers changes code could break. We don't want code to break so we want layers to work only with other
adjacent layers.

Sometimes we need to jump layers for performance reasons. This is fine, but we should know we are doing it and document
appropriately.

Delegation
Delegation is the idea of a method using another object's method to do the real work. In some sense the top layer method is
a front for the other method. Delegation is a form of dependency breaking. The top layer method never has to change while
it's implementation can change at will.

Delegation is an alternative to using inheritance for implementation purposes. One can use inheritance to define an interface
and delegation to implement the interface.

Some people feel delegation is a more robust form of OO than using implementation inheritance. Delegation encourages the
formation of abstract class interfaces and HASA relationships. Both of which encourage reuse and dependency breaking.

Example

 class TestTaker
 {
 public:
 void WriteDownAnswer() { mPaidTestTaker.WriteDownAnswer(); }
 private:
 PaidTestTaker mPaidTestTaker;
 }

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (51 of 62) [10/1/2000 7:24:31 PM]

In this example a test taker delegates actually answering the question to a paid test taker. Not ethical but a definite example
of delegation!

Code Reviews
If you can make a formal code review work then my hat is off to you. Code reviews can be very useful. Unfortunately they
often degrade into nit picking sessions and endless arguments about silly things. They also tend to take a lot of people's time
for a questionable payback.

My god he's questioning code reviews, he's not an engineer!

Not really, it's the form of code reviews and how they fit into normally late chaotic projects is what is being questioned.

First, code reviews are way too late to do much of anything useful. What needs reviewing are requirements and design.
This is where you will get more bang for the buck.

Get all relevant people in a room. Lock them in. Go over the class design and requirements until the former is good and the
latter is being met. Having all the relevant people in the room makes this process a deep fruitful one as questions can be
immediately answered and issues immediately explored. Usually only a couple of such meetings are necessary.

If the above process is done well coding will take care of itself. If you find problems in the code review the best you can
usually do is a rewrite after someone has sunk a ton of time and effort into making the code "work."

You will still want to do a code review, just do it offline. Have a couple people you trust read the code in question and
simply make comments to the programmer. Then the programmer and reviewers can discuss issues and work them out.
Email and quick pointed discussions work well. This approach meets the goals and doesn't take the time of 6 people to do it.

Create a Source Code Control System Early and
Not Often
A common build system and source code control system should be put in place as early as possible in a project's lifecycle,
preferably before anyone starts coding. Source code control is the structural glue binding a project together. If programmers
can't easily use each other's products then you'll never be able to make a good reproducible build and people will piss away
a lot of time. It's also hell converting rogue build environments to a standard system. But it seems the right of passage for
every project to build their own custom environment that never quite works right.

Some issues to keep in mind:

Appoint a buildmaster who is in charge of the build environment and making builds. If you have a tools group so
much the better as build environments generally generate a lot of tools.

●

Programmers should generally leave tagging and other advanced operations to the buildmaster.●

Shared source environments like CVS usually work best in largish projects.●

Makefiles should be completely templated so developers need no makefile expertise.●

You will need multiple builds of the same code meaning programmers will want to have the option of building
against optimized code versions, debugger code versions, code with the -DDEBUG macro defined and versions
without, etc. One way to do this is have everyone check out all code and do a total rebuild. The other better way is for
the buildmaster to build all necessary versions of code so programmers can check out only the code which they are
modifying. The idea is that each combination of compile flags and macros defines a build.

●

Dependency checking should work!●

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (52 of 62) [10/1/2000 7:24:31 PM]

Maintain a cycle of builds. Create a nightly build so problems can be detected early. Create a valid build every week
or for every feature set that is guaranteed to be good. Every release to QA or to customers should be tagged and
available in the tree. Official builds should be official because they contain a certain set of features that assumably
meet a schedule, not because it's a certain date.

●

If you use CVS use a reference tree approach. With this approach a master build tree is kept of various builds.
Programmers checkout source against the build they are working on. They only checkout what they need because the
make system uses the build for anything not found locally. Using the -I and -L flags makes this system easy to setup.
Search locally for any files and libraries then search in the reference build. This approach saves on disk space and
build time.

●

Get a lot of disk space. With disk space as cheap it is there is no reason not to keep plenty of builds around and have
enough space for programmers to compile.

●

Make simple things simple. It should be dead simple and well documented on how to:

check out modules to build❍

how to change files❍

how to setup makefiles❍

how to add new modules into the system❍

how to delete modules and files❍

how to check in changes❍

what are the available libraries and include files❍

how to get the build environment including all compilers and other tools❍

Make a web page or document or whatever. New programmers shouldn't have to go around begging for build secrets
from the old timers.

●

Use the idea of services. If using a feature requires linking to 3 libraries think about making a service specifiable in
the makefile programmers can use instead of having to know the exact libraries needed. With this approach the
libraries making up a service can be changed in a based makefile without requiring changes in all makefiles.

●

On checkins log comments should be useful. These comments should be collected every night and sent to interested
parties.

●

Sources
If you have the money many projects have found Clear Case a good system. Perfectly workable systems have been build on
top of GNU make and CVS. CVS is a freeware build environment built on top of RCS. Its main difference from RCS is that
is supports a shared file model to building software.

Create a Bug Tracking System Early and Not
Often
The earlier people get used to using a bug tracking system the better. If you are 3/4 through a project and then install a bug
tracking system it won't be used. You need to install a bug tracking system early so people will use it.

Programmers generally resist bug tracking, yet when used correctly it can really help a project:

Problems aren't dropped on the floor.●

Problems are automatically routed to responsible individuals.●

The lifecycle of a problem is tracked so people can argue back and forth with good information.●

Managers can make the big schedule and staffing decisions based on the number of and types of bugs in the system.●

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (53 of 62) [10/1/2000 7:24:31 PM]

http://www.pureatria.com/

Configuration management has a hope of matching patches back to the problems they fix.●

QA and technical support have a communication medium with developers.●

Not sexy things, just good solid project improvements.

FYI, it's not a good idea to reward people by the number of bugs they fix :-)

Source code control should be linked to the bug tracking system. During the part of a project where source is frozen before
a release only checkins accompanied by a valid bug ID should be accepted. And when code is changed to fix a bug the bug
ID should be included in the checkin comments.

Sources
Several projects have found DDTS a workable system. There is also a GNU bug tracking system available. Roll your own is
a popular option but using an existing system seems more cost efficient.

Honor Responsibilities
Responsibility for software modules is scoped. Modules are either the responsibility of a particular person or are common.
Honor this division of responsibility. Don't go changing things that aren't your responsibility to change. Only mistakes and
hard feelings will result.

Face it, if you don't own a piece of code you can't possibly be in a position to change it. There's too much context.
Assumptions seemingly reasonable to you may be totally wrong. If you need a change simply ask the responsible person to
change it. Or ask them if it is OK to make such-n-such a change. If they say OK then go ahead, otherwise holster your
editor.

Every rule has exceptions. If it's 3 in the morning and you need to make a change to make a deliverable then you have to do
it. If someone is on vacation and no one has been assigned their module then you have to do it. If you make changes in other
people's code try and use the same style they have adopted.

Programmers need to mark with comments code that is particularly sensitive to change. If code in one area requires changes
to code in an another area then say so. If changing data formats will cause conflicts with persistent stores or remote message
sending then say so. If you are trying to minimize memory usage or achieve some other end then say so. Not everyone is as
brilliant as you.

The worst sin is to flit through the system changing bits of code to match your coding style. If someone isn't coding to the
standards then ask them or ask your manager to ask them to code to the standards. Use common courtesy.

Code with common responsibility should be treated with care. Resist making radical changes as the conflicts will be hard to
resolve. Put comments in the file on how the file should be extended so everyone will follow the same rules. Try and use a
common structure in all common files so people don't have to guess on where to find things and how to make changes.
Checkin changes as soon as possible so conflicts don't build up.

As an aside, module responsibilities must also be assigned for bug tracking purposes.

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (54 of 62) [10/1/2000 7:24:31 PM]

http://www.pureatria.com/products/pureddts/

Process Automation
It's a sad fact of human nature that if you don't measure it or check for it: it won't happen. The implication is you must
automate as much of the development process as possible and provide direct feedback to developers on specific issues that
they can fix.

Process automation also frees up developers to do real work because they don't have to babysit builds and other project time
sinks.

Automated Builds and Error Assignment
Create an automated build system that can create nightly builds, parse the build errors, assign the errors to developers, and
email developers their particular errors so they can fix them.

This is the best way to maintain a clean build. Make sure the list of all errors for a build is available for everyone to see so
everyone can see everyone elses errors. The goal is replace a blaim culture with a culture that tries to get things right and
fixes them when they are wrong. Immediate feedback makes this possible.

Automated Code Checking
As part of the automated build process you can check for coding standard violations and for other problems. If you don't
check for it people will naturally do their own thing. Code reviews aren't good enough to keep the code correct. With a tool
like Abraxis Code Check you can check the code for a lot of potential problems.

This feature like the automated error assignment makes problems immediately visible and immediately correctable, all
without a lot of blame and shame.

Documentation Extraction
Related to this principle is the need to automatically extract documentation from the source code and make it available on
line for everyone to use. If you don't do this documentation will be seen as generally useless and developers won't put as
much effort into it. Making the documentation visible encourages people to do a better job.

Connect Source Code Control System and Bug Tracking
System
When a check-in of source code fixes a bug then have the check-in automatically tell the bug tracking system that the bug
was fixed.

C++ File Extensions
In short: Use the .h extension for header files and .cc for source files.

For some reason an odd split occurred in early C++ compilers around what C++ source files should be called. C header files
always use the .h and C source files always use the .c extension. What should we use for C++?

The short answer is as long as everyone on your project agrees it doesn't really matter. The build environment should be
able to invoke the right compiler for any extension. Historically speaking here have been the options:

Header Files: .h, .hh, .hpp●

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (55 of 62) [10/1/2000 7:24:31 PM]

http://www.abxsoft.com/codchk.htm

Source Files: .C, .cpp, .cc●

Header File Extension Discussion
Using .hh extension is not widely popular but makes a certain kind of sense. C header files use .h file extension and C++
based header files use .hh file extension. The problem is if we consider a header file an interface to a service then we can
have a C interface to a service and C++ interface to the service in the same file. Using preprocessor directives this is
possible and common. The recommendation is to stick with using the .h extension.

Source File Extension Discussion
The problem with the .C extension is that it is indistinguishable from the .c extensions in operating systems that aren't case
sensitive. Yes, this is a UNIX vs. windows issue. Since it is a simple step aiding portability we won't use the .C extension.
The .cpp extension is a little wordy. So the .cc extension wins by default.

No Data Definitions in Header Files
Do not put data definitions in header files. for example:

/*
 * aheader.h
 */
int x = 0;

It's bad magic to have space consuming code silently inserted through the innocent use of header files.1.

It's not common practice to define variables in the header file so it will not occur to devellopers to look for this when
there are problems.

2.

Consider defining the variable once in a .cpp file and use an extern statement to reference it.3.

Consider using a singleton for access to the data.4.

Mixing C and C++
In order to be backward compatible with dumb linkers C++'s link time type safety is implemented by encoding type
information in link symbols, a process called name mangling. This creates a problem when linking to C code as C function
names are not mangled. When calling a C function from C++ the function name will be mangled unless you turn it off.
Name mangling is turned off with the extern "C" syntax. If you want to create a C function in C++ you must wrap it with
the above syntax. If you want to call a C function in a C library from C++ you must wrap in the above syntax. Here are
some examples:

Calling C Functions from C++

extern "C" int strncpy(...);
extern "C" int my_great_function();
extern "C"

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (56 of 62) [10/1/2000 7:24:31 PM]

{
 int strncpy(...);
 int my_great_function();
};

Creating a C Function in C++

extern "C" void
a_c_function_in_cplusplus(int a)
{
}

__cplusplus Preprocessor Directive
If you have code that must compile in a C and C++ environment then you must use the __cplusplus preprocessor directive.
For example:

#ifdef __cplusplus

extern "C" some_function();

#else

extern some_function();

#endif

No Magic Numbers
A magic number is a bare naked number used in source code. It's magic because no-one has a clue what it means including
the author inside 3 months. For example:

if (22 == foo) { start_thermo_nuclear_war(); }
else if (19 == foo) { refund_lotso_money(); }
else if (16 == foo) { infinite_loop(); }
else { cry_cause_im_lost(); }

In the above example what do 22 and 19 mean? If there was a number change or the numbers were just plain wrong how
would you know?

Instead of magic numbers use a real name that means something. You can use #define or constants or enums as names.
Which one is a design choice. For example:

#define PRESIDENT_WENT_CRAZY (22)
const int WE_GOOFED= 19;
enum
{
 THEY_DIDNT_PAY= 16
};

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (57 of 62) [10/1/2000 7:24:31 PM]

if (PRESIDENT_WENT_CRAZY == foo) { start_thermo_nuclear_war(); }
else if (WE_GOOFED == foo) { refund_lotso_money(); }
else if (THEY_DIDNT_PAY == foo) { infinite_loop(); }
else { happy_days_i_know_why_im_here(); }

Now isn't that better?

Promise of OO
OO has been hyped to the extent you'd figure it would solve world hunger and usher in a new era of world peace. Not! OO
is an approach, a philosophy, it's not a recipe which blindly followed yields quality.

Robert Martin put OO in perspective:

OO, when properly employed, does enhance the reusability of software. But it does so at the cost of complexity and
design time. Reusable code is more complex and takes longer to design and implement. Furthermore, it often takes
two or more tries to create something that is even marginally reusable.

●

OO, when properly employed, does enhance the software's resilience to change. But it does so at the cost of
complexity and design time. This trade off is almost always a win, but it is hard to swallow sometimes.

●

OO does not necessarily make anything easier to understand. There is no magical mapping between the software
concepts and every human's map of the real world. Every person is different. What one person percieves to be a
simple and elegant design, another will perceive as convoluted and opaque.

●

If a team has been able, by applying point 1 above, to create a repository of reusable items, then development times
can begin to shrink significantly due to reuse.

●

If a team has been able, by applying point 2 above, to create software that is resilient to change, then maintenance of
that software will be much simpler and much less error prone.

●

You can't use OO and C++ on Embedded
Systems
Oh yes you can. I've used C++ on several embedded systems as have many others. And if you can't why not? Please don't
give in to vague feelings and prejudice. An attitude best shown with a short exchange:

Rube: Our packet driver is slow. We're only getting 100 packets per second.
Me : Good thing you didn't do it in C++ huh?
Rube: Oh yah, it would have been really slow then!
Me : (smiled secretly to myself)

My initial response was prompted by a general unacceptance of C++ in the project and blaming C++ for all problems. Of
course all the parts written in C and assembly had no problems :-) Embedded systems shops tend to be hardware driven
companies and tend not to know much about software development, thus any new fangled concepts like OO and C++ are
ridiculed without verbally accessible reasons. Counter arguments like code that is fast and small and reusable don't make a
dent. Examples like improving the speed of a driver by inlining certain methods and not hacking the code to death gently
roll into the bit bucket.

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (58 of 62) [10/1/2000 7:24:31 PM]

Techniques
Of course C++ can be a disaster for an embedded system when used incorrectly, which of course is true of any tool. Here's
some ideas to use C++ safely in an embedded system:

Get Some Training!

If people don't know C++ and OO then they will likely fail and blame their tools. A good craftsperson doesn't blame
their tools. Get training. Hire at least one experienced person as guide/mentor.

●

Be Careful Using Streams

The streams library is large and slow. You are better off making a "fake" streams library by overloading the <<
operator. If you have a lot of memory then use streams, they are convenient and useful.

●

Be Careful Using Templates

Code using templates can suffer from extreme code bloat. This is pretty much a function of your compiler as
templates can be efficiently used when done correctly. Test your compiler for it how handles templates. If it doesn't
make a copy per file for each template then you are in business. Templates have good time efficiency so they would
be nice to use.

You can fix the template code bloat problem by using explicit instantiation. Actually, even if the compiler generates
one copy per source file. This, however, is often too much programmer work to expect on a large project, so be
careful. Many linkers are smart enough to strip away all but one of the copies.

Another issue to consider is template complexity. Templates can be complex for those new to C++. Bugs in templates
are very hard to find and may overwhelm the patience of users.

●

Exceptions Beware

Embedded applications are usually interrupt driven and multi-threaded. Test that exceptions are thread safe. Many
compilers support exceptions, but not thread safe exceptions. And you probably don't want to call code in an interrupt
that throws exceptions.

●

Use Polymorphic Interfaces to Make Frameworks

When you think through your design and come up with good abstractions you will be shocked at how little code and
how little time it takes to implement new features.

●

Make an OS Encapsulation Library

Don't use your embedded OSs features directly. Create a layer that encapsulates OS functions and use those
encapsulations. Most feature like tasks, interrupts, semaphores, message queues, messages, etc. are common to all
systems. With good encapsulations it's quite possible to have the same code compile for Solaris, VxWorks, Windows,
and other systems. It just takes a little thought.

●

ROM Beware

A lot of systems create a ROM and download code later over the network that is linked against the ROM. Something
to remember is linkers will try and include only code that is used. So your ROM may not contain code that loaded
code expects to be there. You need to include all functions in your ROM.

●

Multiple Interface Levels

Most embedded systems have a command line interface which usually requires C linkage, then they may have an
SNMP interface, and they may have some sort of other friendly interface. Design this up front to be common across
all code. It will make your life much easier. C functions require access to global pointers so they can use objects. The
singleton pattern makes this easier.

Come up with common naming conventions. A decent one is:

Make up a module abbreviation that can be prefixed to all calls. For example: log for the logging module.❍

Encode an action after the prefix. For example: logHelp which prints help for the logging module.❍

●

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (59 of 62) [10/1/2000 7:24:31 PM]

Require a certain set of functions for each sub system: For example:

moduleHelp - prints help for the module■

modulePrint - prints the current state of the module■

moduleStart - start a module■

moduleStop - stop a module■

moduleSetDebug - set the debug level for a module. It's very nice to set debug levels on a module by
module basis.

■

❍

Debug and Error System First

Make your debug and error system first so everyone writing code will use it. It's very hard to retrofit code with debug
output and intelligent use of error codes. If you have some way to write system assert errors to NVRAM, disk, or
some other form of persistent storage so you can recover it on the next reboot.

●

Think About Memory

Think how you'll share memory buffers between ISR code and task level code. Think how fast your default memory
allocator is, it is probably slow. Think if your processor supports purify! Think how you'll track memory corruption
and leakage.

●

Think About System Integrity

You need to design up front how you are going to handle watchdog functions and test that the system is still running
and not corrupted.

●

Remember to Use Volatile

When using memory mapped I/O make sure that you declare the input port variables as volatile, (some compilers do
this automatically), since the value can change without notice, and the optimizer could eliminate what looks like a
redundant access to that variable. Not using volatile leads to some very obscure bugs. If you suspect problems in this
area take a look at the generated code to make sure read-only assumptions are being made.

Sometimes the keyword volatile is ifdef'd out for portability reasons. Check that what you think is volatile is really
declared as volatile.

●

Thin vs. Fat Class Interfaces
How many methods should an object have? The right answer of course is just the right amount, we'll call this the Goldilocks
level. But what is the Goldilocks level? It doesn't exist. You need to make the right judgment for your situation, which is
really what programmers are for :-)

The two extremes are thin classes versus thick classes. Thin classes are minimalist classes. Thin classes have as few
methods as possible. The expectation is users will derive their own class from the thin class adding any needed methods.

While thin classes may seem "clean" they really aren't. You can't do much with a thin class. Its main purpose is setting up a
type. Since thin classes have so little functionality many programmers in a project will create derived classes with everyone
adding basically the same methods. This leads to code duplication and maintenance problems which is part of the reason we
use objects in the first place. The obvious solution is to push methods up to the base class. Push enough methods up to the
base class and you get thick classes.

Thick classes have a lot of methods. If you can think of it a thick class will have it. Why is this a problem? It may not be. If
the methods are directly related to the class then there's no real problem with the class containing them. The problem is
people get lazy and start adding methods to a class that are related to the class in some willow wispy way, but would be
better factored out into another class. Judgment comes into play again.

Thick classes have other problems. As classes get larger they may become harder to understand. They also become harder

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (60 of 62) [10/1/2000 7:24:31 PM]

to debug as interactions become less predictable. And when a method is changed that you don't use or care about your code
will still have to be recompiled, possibly retested, and rereleased.

Portability

Use Typedefs for Types
It's good to typedef int32, int64, int16 etc instead of assuming it'll be done with int, long and short.

Minimize Inlines
Minimize inlining in declarations or inlining in general. As soon as you put your C++ code in a shared library which you
want to maintain compatibility with in the future, inlined code is a major pain in the butt. It's not worth it, for most cases.

Compiler Dependent Exceptions
Using exceptions across the shared library boundary could cause some problems if the shared library and the client module
are compiled by different compiler vendors.

Compiler Dependent RTTI
Different compilers are not guaranteed to name types the same.

Alignment of Class Members
There seems to be disagreement on how to align class data members. Be aware that different platforms have different
alignment rules and it can be an issue. Alignment may also be an issue when using shared memory and shared libraries.

The real thing to remember when it comes to alignment is to put the biggest data members first, and smaller members later,
and to pad with char[] so that the same structure would be used no matter whether the compiler was in "naturally aligned"
or "packed" mode.

For the Mac there's no blanket "always on four byte boundaries" rule -- rather, the rule is "alignment is natural, but never
bigger than 4 bytes, unless the member is a double and first in the struct in which case it is 8". And that rule was inherited
from PowerOpen/AIX.

Recent Changes
2000-07-27. Fix some typos and problems generously emailed in by readers. Added section "No Data Definitions in
Header Files."

1.

2000-03-07. Fix a lot of typos and problems generously emailed in by readers.2.

2000-03-07. Added a section on Process Automation.3.

2000-03-07. Added a section on Leadership.4.

2000-04-14. Corrected bad links.5.

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (61 of 62) [10/1/2000 7:24:31 PM]

Home

© Copyright 1995-1999. Todd Hoff. All rights reserved.

C++ Coding Standard

http://www.cs.umd.edu/users/cml/cstyle/CppCodingStandard.html (62 of 62) [10/1/2000 7:24:31 PM]

http://www.possibility.com/Cpp

	umd.edu
	C++ Coding Standard

