

C# Code Style Guide
Version 1.2

Scott Bellware

80% of the lifetime cost of a piece of software goes to maintenance.

Hardly any software is maintained for its whole life by the original author.

Code conventions improve the readability of the software, allowing engineers to understand new
code more quickly and thoroughly.

Your source code is a product; you need to make sure it is as well-packaged and clean.

Introduction .. 1

Style Guide... 2
Source File Organization .. 3

One Class per File .. 3
Ordering.. 3
Namespace and Using Statements .. 3
XML Documentation.. 3
Class and Interface Declaration .. 3

Indentation.. 4
Line Length .. 4
Wrapping Lines .. 4

Comments... 5
Implementation Comment Formats .. 6
Block Comments .. 6
Single-Line Comments ... 7
Trailing Comments ... 7
Code-Disabling Comments... 7

Documentation Comments ... 8
Comment Tokens - TODO, HACK, UNDONE ... 10
Declarations.. 11

Number Per Line .. 11
Initialization.. 11
Placement ... 11
Class and Interface Declarations .. 11
Properties.. 12

Statements .. 12
Simple Statements .. 12
Compound Statements.. 12
return Statements .. 13
if, if-else, if else-if else Statements... 13
for Statements... 13
while Statements... 13
do-while Statements ... 14
switch Statements ... 14
try-catch Statements ... 14

White Space.. 15
Blank Lines... 15
Blank Spaces .. 15

Naming Rules ... 16
Methods .. 16
Variables... 16
Parameters .. 17
Tables ... 17
Microsoft SQL Server .. 17
General ... 17
Abbreviations ... 18
Capitalization.. 18

Practices ... 21
Design Rules and Heuristics... 22

Providing Access to Instance and Class Variables ... 22
Literals.. 23
Variable Assignments... 23
Parentheses ... 23
Parameters .. 23
Returning Values .. 23

Avoid excessive nesting using guard clause .. 24
Debug Code.. 25

Refactoring ... 25
Conclusion.. 26

C# Code Style Guide

1

Introduction
Superior coding techniques and programming practices are hallmarks of a professional
programmer. The bulk of programming consists of making a large number of small choices while
attempting to solve a larger set of problems. How wisely those choices are made depends largely
upon the programmer's skill and expertise.

This document addresses some fundamental coding techniques and provides a collection of coding
practices.

The readability of source code has a direct impact on how well a developer comprehends a
software system, which in turn directly affects project velocity. Code maintainability refers to how
easily that software system can be changed to add new features, modify existing features, fix bugs,
or improve performance. Although readability and maintainability are the result of many factors,
one particular facet of software development upon which all developers have an influence is
coding technique. The easiest method to ensure that a team of developers will yield quality code is
to establish a coding standard, which is then enforced at routine code reviews. Although the
primary purpose for conducting code reviews throughout the development life cycle is to identify
defects in the code, the reviews can also be used to enforce coding standards in a uniform manner.

A comprehensive coding standard encompasses all aspects of code construction and, while
developers should exercise prudence in its implementation, it should be closely followed.
Completed source code should reflect a harmonized style, as if a single developer wrote the code
in one session.

C# Code Style Guide

2

Style Guide

C# Code Style Guide

3

Source File Organization

One Class per File
Source files should contain one class definition per source file. Said differently, each class
definition will exist within its own file. The stem of the file name must be the same name as the
name used in the class declaration. For example, the class definition for a class named Loan will
have a file name of Loan.cs.

Ordering
C# source files have the following ordering:
• using statements
• namespace statement
• Class and interface declarations

Namespace and Using Statements
The first non-comment lines of most C# source files is the using statements. After that, namespace
statements can follow. For example:

using System.Data;

namespace Business.Framework;

Both the using statement and the namespace statement are aligned flush against the left margin.

The first letter of a component in a namespace is always capitalized. If the namespace name is an
acronym, the first letter only of the namespace will be capitalized, as in System.Data.Sql. If the
acronym only has two letters, both letters are capitalized, as in System.IO.

XML Documentation
Visual Studio provides for a type of documentation that the development environment is able to
detect and extract to structured XML that is used to create code-level documentation that exists
outside of the source code itself.

XML documentation is provided for class descriptions, methods, and properties. XML
documentation should be used in all circumstances where it's available.

Refer to the detailed discussion on XML documentation in this document as well as in the
documents provided with Visual Studio .NET.

Class and Interface Declaration

Sequence Part of Class/Interface

Declaration
Notes

1 Class/interface
documentation

/// <summary>
/// The Person class provides ...
/// </summary>
public class Person

2 class or interface

C# Code Style Guide

4

statement

3 Fields First private, then protected, then internal, and then
public.

4 Properties First private, then protected, then internal, and then
public.

4 Constructors
First private, then protected, then internal, and then
public. Default first, then order in increasing
complexity.

5 Methods

Methods should be grouped by functionality rather than
by scope or accessibility. For example a private class
method can be in between two public instance methods.
The goal is to make reading and understanding the code
easier.

Indentation
Indentation is constructed with tabs, not spaces. Typically, tabs are set to be displayed as white
space with a width of four characters.

Line Length
Optimizing for down level tools and editors such as Notepad should not impact code style. 80
character lines are a recommendation, not a hard and fast rule.

Wrapping Lines
When an expression will not fit on a single line, break it according to these general principles:
• Break after an operator.
• Break after a comma.
• Prefer higher-level breaks to lower-level breaks.
• Indent once after a break.

Here is an example of breaking a method call:

SomeMethod1(longExpression1, someMethod2(longExpression2,
 longExpression3)); // Note: 1 indent start second line.

Following are two examples of breaking an arithmetic expression. The first is preferred, since the
break occurs outside the parenthesized expression, which is at a higher level.

longName1 = longName2 * (longName3 + longName4 - longName5) +
 4 * longname6; // PREFER

longName1 = longName2 * (longName3 + longName4
 - longName5) + 4 * longname6; // AVOID

Following is an example of indenting method declarations:

SomeMethod(int anArg,
 Object anotherArg,
 String yetAnotherArg,
 Object andStillAnother)
{
 ...
}

Line wrapping for if statements should use the indent rule. For example:

C# Code Style Guide

5

// USE THIS INDENTATION
if ((condition1 && condition2) ||
 (condition3 && condition4) ||
 !(condition5 && condition6))
{
 DoSomethingAboutIt();
}

// OR USE THIS
if ((condition1 && condition2) || (condition3 && condition4) ||
 !(condition5 && condition6))
{
 DoSomethingAboutIt();
}

Here are two acceptable ways to format ternary expressions:

alpha = (aLongBooleanExpression ? beta : gamma);

alpha = (aLongBooleanExpression ?
 beta :
 gamma);

Comments
C# programs can have two kinds of comments: implementation comments and documentation
comments. Implementation comments are those found in C++, which are delimited by /*...*/, and
//. Documentation comments are C# only, and are delimited by special XML tags that can be
extracted to external files for use in system documentation.

Implementation comments are meant for commenting out code or for comments about the
particular implementation. Doc comments are meant to describe the specification of the code,
from an implementation-free perspective, to be read by developers who might not necessarily have
the source code at hand.

Comments should be used to give overviews of code and provide additional information that is not
readily available in the code itself. Comments should contain only information that is relevant to
reading and understanding the program. For example, information about how the corresponding
component is built or in what directory it resides should not be included as a comment.
Discussion of nontrivial or obscure design decisions is appropriate, but avoid duplicating
information that is present in (and clear from) the code. It is too easy for redundant comments to
get out of date. In general, avoid any comments that are likely to get out of date as the code
evolves.

Note: The frequency of comments sometimes reflects poor quality of code. When you feel
compelled to add a comment, consider rewriting the code to make it clearer.

Following are recommended commenting techniques:
• When modifying code, always keep the commenting around it up to date.
• Comments should consist of complete sentences and follow active language naming

responsibilities (Adds the element instead of The element is added).
• At the beginning of every routine, XML documentation is used to indicate the routine's

purpose, assumptions, and limitations. A boilerplate comment should be a brief introduction
to understand why the routine exists and what it can do. Refer to the detailed discussion on
XML documentation in this document as well as in the document provided with Visual Studio
.NET.

C# Code Style Guide

6

• Avoid adding comments at the end of a line of code; end-line comments make code more
difficult to read. However, end-line comments are appropriate when annotating variable
declarations. In this case, align all end-line comments at a common tab stop.

• Avoid using clutter comments, such as an entire line of asterisks. Instead, use white space to
separate comments from code. XML documentation serves the purpose of delineating
methods.

• Avoid surrounding a block comment with a typographical frame. It may look attractive, but it
is difficult to maintain.

• Prior to deployment, remove all temporary or extraneous comments to avoid confusion during
future maintenance work.

• If you need comments to explain a complex section of code, examine the code to determine if
you should rewrite it. If at all possible, do not document bad code – rewrite it. Although
performance should not typically be sacrificed to make the code simpler for human
consumption, a balance must be maintained between performance and maintainability.

• Use complete sentences when writing comments. Comments should clarify the code, not add
ambiguity.

• Comment as you code, because most likely there won't be time to do it later. Also, should
you get a chance to revisit code you've written, that which is obvious today probably won't be
obvious six weeks from now.

• Avoid the use of superfluous or inappropriate comments, such as humorous sidebar remarks.
• Use comments to explain the intent of the code. They should not serve as inline translations

of the code.
• Comment anything that is not readily obvious in the code. This point leads to allot of

subjective interpretations. Use your best judgment to determine an appropriate level of what
it means for code to be not really obvious.

• To prevent recurring problems, always use comments on bug fixes and work-around code,
especially in a team environment.

• Use comments on code that consists of loops and logic branches. These are key areas that
will assist the reader when reading source code.

• Separate comments from comment delimiters with white space. Doing so will make
comments stand out and easier to locate when viewed without color clues.

• Throughout the application, construct comments using a uniform style, with consistent
punctuation and structure.

• Comments should never include special characters such as form-feed and backspace.

Implementation Comment Formats
C# syntax provides for many styles of code comments. For simplicity and based on the heuristic
use of comments in C#, we will use comments traditionally reserved for end of line comments and
code disabling for all cases of code comments.

Block Comments
Block comments are used to provide descriptions of files, methods, data structures and algorithms.
Block comments may be used at the beginning of each file. They can also be used in other places,
such as within methods. Block comments inside a function or method should be indented to the
same level as the code they describe.

A blank line to set it apart from the rest of the code should precede a block comment.

// Here is a block comment

C# Code Style Guide

7

// that breaks across multiple
// lines.

Single-Line Comments
Short comments can appear on a single line indented to the level of the code that follows. If a
comment can't be written in a single line, it should follow the block comment format. A single-line
comment should be preceded by a blank line. Here's an example of a single-line comment in code.

if (condition)
{
 // Handle the condition.
 ...
}

Trailing Comments
Very short comments can appear on the same line as the code they describe, but should be shifted
far enough to separate them from the statements. If more than one short comment appears in a
chunk of code, they should all be indented to the same tab setting.

Here's an example of a trailing comment in C# code:

if (a == 2)
{
 return true; // Special case
}
else
{
 return isPrime(a); // Works only for odd a
}

Code-Disabling Comments
The // comment delimiter can comment out a complete line or only a partial line. Code-disabling
comment delimiters are found in the first position of a line of code flush with the left margin.
Visual Studio .NET provides for bulk commenting by selecting the lines of code to disable and
pressing CTRL+K, CTRL+C. To uncomment, use the CTRL+K, CTRL+U chord.

The following is an example of code-disabling comments:

if (foo > 1)
{
 // Do a double-flip.
 ...
}
else
{
 return false; // Explain why here.
}

// if (bar > 1)
// {
//
// // Do a triple-flip.
// ...
// }
// else
// {
// return false;
// }

C# Code Style Guide

8

Documentation Comments
C# provides a mechanism for developers to document their code using XML. In source code files,
lines that begin with /// and that precede a user-defined type such as a class, delegate, or interface;
a member such as a field, event, property, or method; or a namespace declaration can be processed
as comments and placed in a file.

XML documentation is required for classes, delegates, interfaces, events, methods, and properties.
Include XML documentation for fields that are not immediately obvious.

The following sample provides a basic overview of a type that has been documented.
// XmlSample.cs
using System;

/// <summary>
/// Class level summary documentation goes here.
/// </summary>
/// <remarks>
/// Longer comments can be associated with a type or member
/// through the remarks tag.
/// </remarks>
public class SomeClass
{
 /// <summary>
 /// Store for the name property.
 /// </summary>
 private string name;

 /// <summary>
 /// Name property.
 /// </summary>
 /// <value>
 /// A value tag is used to describe the property value.
 /// </value>
 public string Name
 {
 get
 {
 if (this.name == null)
 {
 throw new Exception("Name is null");
 }

 return myName;
 }
 }

 /// <summary>
 /// The class constructor.
 /// </summary>
 public SomeClass()
 {
 // TODO: Add Constructor Logic here
 }

 /// <summary>
 /// Description for SomeMethod.
 /// </summary>
 /// <param name="s">Parameter description for s goes here.</param>
 /// <seealso cref="String">
 /// You can use the cref attribute on any tag to reference a type
 /// or member
 /// and the compiler will check that the reference exists.
 /// </seealso>
 public void SomeMethod(string s) {}

C# Code Style Guide

9

 /// <summary>
 /// Some other method.
 /// </summary>
 /// <returns>
 /// Return results are described through the returns tag.
 /// </returns>
 /// <seealso cref="SomeMethod(string)">
 /// Notice the use of the cref attribute to reference a specific
 /// method.
 /// </seealso>
 public int SomeOtherMethod()
 {
 return 0;
 }

 /// <summary>
 /// The entry point for the application.
 /// </summary>
 /// <param name="args">A list of command line arguments.</param>
 public static int Main(String[] args)
 {
 // TODO: Add code to start application here
 return 0;
 }
}

XML documentation starts with ///. When you create a new project, the wizards put some starter
/// lines in for you. The processing of these comments has some restrictions:
• The documentation must be well-formed XML. If the XML is not well-formed, a warning is

generated and the documentation file will contain a comment saying that an error was
encountered.

• Developers are not free to create their own set of tags.
• There is a recommended set of tags.
• Some of the recommended tags have special meanings:

• The <param> tag is used to describe parameters. If used, the compiler will verify that the
parameter exists and that all parameters are described in the documentation. If the
verification failed, the compiler issues a warning.

• The cref attribute can be attached to any tag to provide a reference to a code element. The
compiler will verify that this code element exists. If the verification failed, the compiler
issues a warning. The compiler also respects any using statements when looking for a
type described in the cref attribute.

• The <summary> tag is used by IntelliSense inside Visual Studio to display additional
information about a type or member.

If you need to give information about a class, interface, variable, or method that isn't appropriate
for documentation, use an implementation block comment or single-line comment immediately
after the declaration.

Document comments must not be positioned inside a method or constructor definition block,
because C# associates documentation comments with the first declaration after the comment.

Here are the XML documentation tags available:

Tag Notes

<c> The <c> tag gives you a way to indicate that text within a description should be
marked as code. Use <code> to indicate multiple lines as code.

<code> The <code> tag gives you a way to indicate multiple lines as code. Use <c> to

C# Code Style Guide

10

indicate that text within a description should be marked as code.

<example> The <example> tag lets you specify an example of how to use a method or
other library member. Commonly, this would involve use of the <code> tag.

<exception> The <exception> tag lets you document an exception class.
Compiler verifies syntax.

<include>

The <include> tag lets you refer to comments in another file that describe the
types and members in your source code. This is an alternative to placing
documentation comments directly in your source code file.

The <include> tag uses the XML XPath syntax. Refer to XPath documentation
for ways to customize your <include> use.
Compiler verifies syntax.

<list>

The <listheader> block is used to define the heading row of either a table or
definition list. When defining a table, you only need to supply an entry for term
in the heading.

Each item in the list is specified with an <item> block. When creating a
definition list, you will need to specify both term and text. However, for a table,
bulleted list, or numbered list, you only need to supply an entry for text.

A list or table can have as many <item> blocks as needed.

<para> The <para> tag is for use inside a tag, such as <remarks> or <returns>, and
lets you add structure to the text.

<param> The <param> tag should be used in the comment for a method declaration to
describe one of the parameters for the method. Compiler verifies syntax.

<paramref>
The <paramref> tag gives you a way to indicate that a word is a parameter.
The XML file can be processed to format this parameter in some distinct way.
Compiler verifies syntax.

<permission> The <permission> tag lets you document the access of a member. The
System.Security.PermissionSet lets you specify access to a member.

<remarks> The <remarks> tag is where you can specify overview information about a class
or other type. <summary> is where you can describe the members of the type.

<returns> The <returns> tag should be used in the comment for a method declaration to
describe the return value.

<see>
The <see> tag lets you specify a link from within text. Use <seealso> to
indicate text that you might want to appear in a See Also section. Compiler
verifies syntax.

<seealso> The <seealso> tag lets you specify the text that you might want to appear in a
See Also section. Use <see> to specify a link from within text.

<summary> The <summary> tag should be used to describe a member for a type. Use
<remarks> to supply information about the type itself.

<value> The <value> tag lets you describe a property.

Comment Tokens - TODO, HACK, UNDONE
When you add comments with comment tokens to your code, you automatically add shortcuts to
the Task List window. Double-click any comment displayed in the Task List to move the
insertion point directly to the line of code where the comment begins.

Note: Comments in HTML, .CSS, and .XML markup are not displayed in the Task List.

To add a comment hyperlink to the Task List window, enter the comment marker. Enter TODO,
HACK, or UNDONE. Add the Comment text.

// TODO Fix this method.

// HACK This method works but needs to be redesigned.

C# Code Style Guide

11

A hyperlink to your comment will appear in the Task List in the Visual Studio development
environment.

Declarations

Number Per Line
One declaration per line is recommended since it encourages commenting. In other words,

private int level = 2; // indentation level
private int size = 8; // size of table

is preferred over

private int level, size; // AVOID!!!

Initialization
Try to initialize local variables where they're declared. The only reason not to initialize a variable
where it's declared is if the initial value depends on some computation occurring first. For
instance, if you declare an int without initializing it and expect a public method of the owning
class to be invoked that will act on the in, you will have no way of knowing if the int was properly
initialized for it was used. In this case declare the int and initialize it with an appropriate value.

Placement
Put declarations only at the beginning of blocks. (A block is any code surrounded by curly braces
"{" and "}".) Don't wait to declare variables until their first use; it can confuse the unwary
programmer and hamper code portability within the scope.

public void SomeMethod()
{
 int int1 = 0; // Beginning of method block.

 if (condition)
 {
 int int2 = 0; // Beginning of "if" block.
 ...
 }
}

The one exception to the rule is indexes of for loops, which in C# can be declared in the for
statement:

for (int i = 0; i < maxLoops; i++)
{
 // Do something
}

Class and Interface Declarations
When coding C# classes and interfaces, the following formatting rules should be followed:
• No space between a method name and the parenthesis "(" starting its parameter list
• Open brace "{" appears at the beginning of the line following declaration statement and is

indented to the beginning of the declaration.
• Closing brace "}" starts a line by itself indented to match its corresponding opening statement.

For null statements, the "}" should appear immediately after the "{" and both braces should
appear on the same line as the declaration with 1 blank space separating the parentheses from
the braces:

C# Code Style Guide

12

public class Sample : Object
{
 private int ivar1;
 private int ivar2;

 public Sample(int i, int j)
 {
 this.ivar1 = i;
 this.ivar2 = j;
 }

 protected void EmptyMethod() {}
}

• Methods are separated by two blank lines.

Properties
If the body of the get or set method of a property consists of a single statement, the statement is
written on the same line as the method signature. White space is inserted between the property
method (get, set) and the opening brace. This will create visually more compact class definitions..

public int Foo
{
 get { return this.foo; }
 set { this.foo = value; }
}

instead of

public int Foo
{
 get
 {
 return this.foo;
 }
 set
 {
 this.foo = value;
 }
}

Statements

Simple Statements
Each line should contain at most one statement. Example:
argv++; // Correct
argc--; // Correct
argv++; argc--; // AVOID!

Compound Statements
Compound statements are statements that contain lists of statements enclosed in braces “{
statements }”. See the following sections for examples.
• The enclosed statements should be indented one more level than the compound statement.
• The opening brace should be at the beginning of the line following the line that begins the

compound statement and be indented to the beginning of the compound statement. The
closing brace should begin a line and be indented to the beginning of the compound
statement.

C# Code Style Guide

13

• Braces are used around all statements, even single statements, when they are part of a control
structure, such as a if-else or for statement. This makes it easier to add statements without
accidentally introducing bugs due to forgetting to add braces.

return Statements
A return statement with a value should not use parentheses unless they make the return value
more obvious in some way. Example:

return;

return myDisk.size();

return (size ? size : defaultSize);

if, if-else, if else-if else Statements
The if-else class of statements should have the following form:

if (condition)
{
 statements;
}

if (condition)
{
 statements;
}
else
{
 statements;
}

if (condition)
{
 statements;
}
else if (condition)
{
 statements;
}
else
{
 statements;
}

Note: if statements always use braces {}. Avoid the following error-prone form:

if (condition) //AVOID! THIS OMITS THE BRACES {}!
 statement;

for Statements
A for statement should have the following form:

for (initialization; condition; update)
{
 statements;
}

while Statements
A while statement should have the following form:

C# Code Style Guide

14

while (condition)
{
 statements;
}

An empty while statement should have the following form:

while (condition);

do-while Statements
A do-while statement should have the following form:
do
{
 statements;
} while (condition);

switch Statements
A switch statement should have the following form:

switch (condition)
{
 case 1:
 // Falls through.
 case 2:
 statements;
 break;
 case 3:
 statements;
 goto case 4;
 case 4:
 statements;
 break;
 default:
 statements;
 break;
}

When there is no code between two cases and there is no break statement, the code falls though.
If case 1 is satisfied, the code for case 2 will execute. If code is present between two cases, and a
fall through is desired, a goto case statement is required, as in case 3. This is done so that errors
aren't introduced by inadvertently omitting a break.

Every time a case falls through (doesn't include a break statement), add a comment where the
break statement would normally be.

Every switch statement should include a default case. The break in the default case is redundant,
but it prevents a fall-through error if later another case is added.

try-catch Statements
A try-catch statement should have the following format:

try
{
 statements;
}
catch (ExceptionClass e)
{
 statements;
}

C# Code Style Guide

15

A try-catch statement may also be followed by finally, which executes regardless of whether
or not the try block has completed successfully.

try
{
 statements;
}
catch (ExceptionClass e)
{
 statements;
}
finally
{
 statements;
}

White Space

Blank Lines
Blank lines improve readability by setting off sections of code that are logically related.
One blank line should always be used in the following circumstances:
• Between the local variables in a method and its first statement
• Between logical sections inside a method to improve readability
• After the closing brace of a code block that is not followed by another closing brace.

Blank Spaces
Blank spaces should be used in the following circumstances:
• A keyword followed by a parenthesis should be separated by a space. Example:
while (true)
{
 ...
}
Note that a blank space should not be used between a method name and its opening parenthesis.
This helps to distinguish keywords from method calls.

• A blank space should appear after commas in argument lists.
• All binary operators except “.” should be separated from their operands by spaces. Blank

spaces should never separate unary operators such as unary minus, increment ("++"), and
decrement ("--") from their operands. Example:

a += c + d;
a = (a + b) / (c * d);

while (d < n)
{
 n++;
}

this.PrintSize("size is " + foo + "\n");

• The expressions in a for statement should be separated by blank spaces. Example:
for (expr1; expr2; expr3)

C# Code Style Guide

16

Naming Rules
Naming rules make programs more understandable by making them easier to read. They can also
give information about the function of the identifier, for example, whether it's a constant, package,
or class, which can be helpful in understanding the code.

Perhaps one of the most influential aids to understanding the logical flow of an application is how
the various elements of the application are named. A name should tell "what" rather than "how."
By avoiding names that expose the underlying implementation, which can change, you preserve a
layer of abstraction that simplifies the complexity. For example, you could use GetNextOrder()
instead of GetNextArrayElement().

A tenet of naming is that difficulty in selecting a proper name may indicate that you need to
further analyze or define the purpose of an item. Make names long enough to be meaningful but
short enough to avoid being wordy. Programmatically, a unique name serves only to differentiate
one item from another. Expressive names function as an aid to the human reader; therefore, it
makes sense to provide a name that the human reader can comprehend. However, be certain that
the names chosen are in compliance with the applicable rules and standards.

Following are recommended naming techniques:

Methods
• Names of methods should contain active verb forms and imperatives (DeleteOrder,

OpenSocket). It is not necessary to include the noun name when the active verb refers
directly to the containing class. Example:
Socket.OpenSocket(); // AVOID! No need to mention “Socket” in name

Socket.Open(); // PREFER

• Avoid elusive names that are open to subjective interpretation, such as Analyze() for a
routine, or xxK8 for a variable. Such names contribute to ambiguity more than abstraction.

• Use the verb-noun method for naming routines that perform some operation on a given object,
such as CalculateInvoiceTotal().

• In method overloading, all overloads should perform a similar function.

Variables
• Do not use any special prefix characters to indicate that the variable is scoped to the class, as

in _name or m_name. Always use the “this” keyword when referring to members at a class’s
root scope from within a lower level scope, as in this.name.

• Do not use Hungarian notation for field names. Good names describe semantics, not type.
• Prepend computation qualifiers (avg, sum, min, max, index) to the beginning of a variable

name where appropriate.
• Use customary opposite pairs in variable names, such as min/max, begin/end, and open/close.
• In object-oriented languages, it is redundant to include class names in the name of class

properties, such as Book.BookTitle. Instead, use Book.Title.
• Collections should be named as the plural form of the singular objects that the collection

contains. A collection of Book objects is named Books.
• Boolean variable names should contain “Is” or “is” which implies Yes/No or True/False

values, such as isFound, or isSuccess.

C# Code Style Guide

17

• Avoid using terms such as Flag when naming status variables, which differ from Boolean
variables in that they may have more than two possible values. Instead of orderFlag, use a
more descriptive name such as orderStatus.

• Even for a short-lived variable that may appear in only a few lines of code, still use a
meaningful name. Use single-letter variable names, such as i or j for short-loop indexes
only.

• Constants should not be all uppercase with underscores between words, such as
NUM_DAYS_IN_WEEK. Constants follow the same naming rules as properties. The
aforementioned constant would be named NumDaysInWeek.

• Temporary variables should always be used for one purpose only; otherwise, several variables
should be declared.

Parameters
• Do not prefix method parameters with any special character to indicate that they are

parameters.
• Parameter names should follow the naming rules for variables (above).

Tables
• When naming tables, express the name in the singular form. For example, use Employee

instead of Employees.
• When naming columns of tables, do not repeat the table name; for example, avoid having a

field called EmployeeLastName in a table called Employee.
• Do not incorporate the data type in the name of a column. This will reduce the amount of

work needed should it become necessary to change the data type later.

Microsoft SQL Server
• Do not prefix stored procedures with sp_, because this prefix is reserved for identifying

system-stored procedures.
• In Transact-SQL, do not prefix variables with @@, which should be reserved for truly global

variables such as @@IDENTITY.

General
• Implementation details, in particular type specifications, should not be mention in the name of

a descriptor. This is a common trait in procedural languages like Visual Basic where
lowercase prefixes are used to encode the data type in the name of the identifier, such as
oInvoice. This approach is not applicable to contemporary languages where the
aforementioned identifier is written simply as invoice.

• Names with semantic content are preferred to names with type specifications (sizeOfArray
instead of anInteger).

• Names of descriptors should be chosen in such a way that they can be read like a sentence
within instructions.

• Minimize the use of abbreviations. If abbreviations are used, be consistent in their use. An
abbreviation should have only one meaning and likewise, each abbreviated word should have
only one abbreviation. For example, if using min to abbreviate minimum, do so everywhere
and do not later use it to abbreviate minute.

• When naming methods, include a description of the value being returned, such as
GetCurrentCustomerName().

C# Code Style Guide

18

• File and folder names, like method names, should accurately describe what purpose they
serve.

• Avoid homonyms when naming elements to prevent confusion during code reviews, such as
write and right.

• When naming elements, be aware of commonly misspelled words. Also, be aware of
differences that exist between American and British English, such as color/colour and
check/cheque.

Abbreviations
To avoid confusion and guarantee cross-language interoperation, follow these rules regarding the
use of abbreviations:
• When using acronyms, use camel case for acronyms more than two characters long. For

example, use HtmlButton. However, you should capitalize acronyms that consist of only two
characters, such as System.IO instead of System.Io.

• Do not use abbreviations in identifiers or parameter names.
• Do not use abbreviations or contractions as parts of identifier names. For example, use

GetWindow instead of GetWin.
• Do not use acronyms that are not generally accepted in the computing field.

Where appropriate, use well-known acronyms to replace lengthy phrase names. For example, use
UI for User Interface and OLAP for On-line Analytical Processing.

Capitalization

Use the following three conventions for capitalizing identifiers:

Pascal case

The first letter in the identifier and the first letter of each subsequent concatenated word are
capitalized. You can use Pascal case for identifiers of three or more characters. For example:
BackColor.

Camel case

The first letter of an identifier is lowercase and the first letter of each subsequent concatenated
word is capitalized. For example: backColor.

Uppercase

All letters in the identifier are capitalized. Use this convention only for identifiers that consist of
two or fewer letters. For example: System.IO, System.Web.UI.

You might also have to capitalize identifiers to maintain compatibility with existing, unmanaged
symbol schemes, where all uppercase characters are often used for enumerations and constant
values. In general, these symbols should not be visible outside of the assembly that uses them.

The following table provides rules and example for common identifiers:

Identifier
Type Rules for Naming Examples

Namespaces Namespace names should be nouns, in
Pascal case. Avoid the use of

MyCompany.Framework.Data;
MyCompany.Factories;

C# Code Style Guide

19

underscores ("_") in namespace
names. Try to keep names simple and
descriptive. Use whole words and
avoid acronyms and abbreviations
unless the abbreviation is much more
widely used than the long form, such
as Url or Html. All custom namespace
names are to begin with the company
name if applicable, followed by the
project, product, or technology name,
and the purpose name, followed by the
purpose of the package as an
organizational unit.

Classes

Class names should be nouns, in
Pascal case. As with namespaces,
keep class names simple and
descriptive. Use whole words and
avoid acronyms and abbreviations
unless the abbreviation is much more
widely used than the long form, such
as Url or Html.

class SalesOrder;
class LineItem;
class HtmlWigets;

Interfaces Interface names use Pascal case and
begin with the letter "I".

interface IBusinessRule;

Methods Methods should be active verb/nouns
forms, in Pascal case.

GetDataRow();
UpdateOrder();

Instance
Fields

Instance fields are in camel case.
Variable names should not start with
underscore, even though it is allowed.

Variable names should be meaningful.
The choice of a variable name should
be mnemonic – that is, designed to
indicate to the casual observer the
intent of its use. One-character
variable names should be avoided.

protected string name;

private int orderId;
private string lastName;
private float width;

// AVOID!
private _total;

Enum Types
and Enum
Values

Enum types and values are in Pascal
case. Use abbreviations sparingly.
Do not use an Enum suffix on Enum
type names. Use a singular name for
most Enum types, but use a plural
name for Enum types that are bit
fields.

enum Status {ReadyToGo,
 WaitingForNow};

enum Day {Monday, Tuesday};

Events

Events are in Pascal case. Use the
suffix “EventHandler” on event
handler names. Specify two
parameters named sender and e. The
sender parameter represents the object
that raised the event. The sender
parameter is always of type object,
even if it is possible to use a more
specific type. The state associated
with the event is encapsulated in an
instance of an event class named e.
Use an appropriate and specific event

public delegate void
MouseEventHandler(object sender,
MouseEventArgs e);

C# Code Style Guide

20

class for the e parameter type. Name
an event argument class with the
EventArgs suffix. Consider naming
events with a verb. Use a gerund (the
"ing" form of a verb) to create an
event name that expresses the concept
of pre-event, and a past-tense verb to
represent post-event. For example, a
Close event that can be canceled
should have a Closing event and a
Closed event. Do not use the
BeforeXxx/AfterXxx naming pattern.
Do not use a prefix or suffix on the
event declaration on the type. For
example, use Close instead of
OnClose. In general, you should
provide a protected method called
OnXxx on types with events that can be
overridden in a derived class. This
method should only have the event
parameter e, because the sender is
always the instance of the type.

Exception
Classes

Exception classes are in Pascal case
and always have the suffix
“Exception”.

InvalidCastException
DomainValueException

Custom
Attributes

Custom attributes are in Pascal case
and always have the suffix “Attribute”.

PersistentEntityAttribute

Properties
Properties are in Pascal case with an.
Property names should directly reflect
the underlying attribute.

public int OrderId
public string LastName

Object
References

Objects references are camel case
when non-public and pascal case when
public (although references should
never be public without good reason).
Except where exceptionally warranted,
objects are named after their class. An
exception to this rule would be when
two or more objects are needed of the
same class within the same scope.
Avoid naming object references as
abbreviations or acronyms of the class
name.

public string Name;

Order order = new Order;
LineItem lineItem =
 new LineItem();

Constants
Constants are in Pascal case. They
should not be all uppercase with words
separated by underscores ("_").

const int NumDaysInWeek = 4;

// AVOID!
const int NUM_DAYS_IN_WEEK = 4;

C# Code Style Guide

21

Practices

C# Code Style Guide

22

Design Rules and Heuristics
• Design coherent operations, that is, operations that fulfill only one task.
• Do without side effects: do not work with global variables and the like in your operations.

Pass this kind of information as arguments, instead.
• A subclass should support all attributes, operations, and relations of its superclass;

suppressions of these properties should be avoided.
• A subclass should not define constraints on inherited properties of its superclass.
• If inherited operations need to be overwritten, they should be compatible with the behavior of

the overwritten ones.
• Aim for even distribution of knowledge about the application domain across all classes
• Design your concepts to be as general as possible. That is, design with a view to interfaces

instead of implementation.
• Design client-server relationships between classes (cooperation principal).
• Minimize dependencies between classes.
• The superclass of an abstract class is itself an abstract class too.
• Maximize the internal binding of classes. Responsibilities which belong together should be

concentrated in one class.
• Minimize the external dependencies of a class. Keep the number of contracts (interfaces)

with other classes to a minimum.
• Instead of functional modes, different operations should be provided. Where functional

modes are used, use enum types as mode discriminators.
• Avoid indirect navigation. Limit the knowledge of classes about their neighboring classes.
• The code for one operation should not exceed one page. Lengthy operations are the hallmark

of procedural programming. If an operation is lengthy, it is likely that it is a candidate for
redesign.

• Mind uniform and descriptive names, data types, and parameter orders.
• If in an operation you find switch/case instructions or several consecutive instructions, this is

a symptom of procedural thinking (polymorphism phobia).
• Take extreme values into account (minimum, maximum, nil, nonsense) and plan a robust

behavior in all situations.
• Try to do without artificial or arbitrary limits (for example, a list with 14 entries) and try to

implement dynamic behavior.
• It is never too early to start thinking about undo functions, user-specific configurations, user

access right concepts, error handling, etc.
• Take company-specific and general standards into account.
• Avoid data-heavy and data-driven design. Behavior driven design has advantages over purely

data-driven design. In data driven design, few central control classes emerge, but a high
overall coupling of classes. In behavior-driven design the tasks are more equally divided
across the classes, significantly fewer messages are generated, and the classes are coupled
more loosely.

Providing Access to Instance and Class Variables
Don't make any instance or class variables public or protected without good reason. Often,
instance variables don't need to be explicitly set or gotten. Use a public or protected property
instead.

C# Code Style Guide

23

One example of appropriate public instance variables is the case where the class is essentially a
data structure, with no behavior. In other words, if you would have used a struct instead of a
class, then it's appropriate to make the class's instance variables public.

Use the this keyword when referencing instance fields in methods. The reader will be able to
immediately differentiate between variables scoped to the method and those scoped to the object.

Literals
Numerical constants (literals) should not be coded directly, except for -1, 0, and 1, which can
appear in a for loop as counter values.

Variable Assignments
Avoid assigning several variables to the same value in a single statement. It is hard to read.
Example:
fooBar.fChar = barFoo.lchar = 'c'; // AVOID!

Do not use embedded assignments in an attempt to improve run-time performance. This is the job
of the compiler. Example:

d = (a = b + c) + r; // AVOID!

should be written as:

a = b + c;
d = a + r;

Parentheses
It is generally a good idea to use parentheses liberally in expressions involving mixed operators to
avoid operator precedence problems. Even if the operator precedence seems clear to you, it might
not be to others-you shouldn't assume that other programmers know precedence as well as you do.
if (a == b && c == d) // AVOID!
if ((a == b) && (c == d)) // RIGHT

Parameters
Check for valid parameter arguments. Perform argument validation for every public or protected
method and property set accessor. Throw meaningful exceptions to the developer for invalid
parameter arguments. Use the System.ArgumentException Class, or a class derived from
System.Exception.

Constructor parameters used to initialize instance fields should have the same name as the instance
field. Example:

public class Foo
{
 private string fooId;

 public foo(string fooId)
 {
 this.fooId = fooId;
 }
}

Returning Values
Try to make the structure of your program match the intent. Example:

if (booleanExpression)

C# Code Style Guide

24

{
 return true;
}
else
{
 return false;
}

should instead be written as:

return booleanExpression;

Similarly,

if (condition)
{
 return x;
}

return y;

should be written as:

return (condition ? x : y);

Avoid excessive nesting using guard clause
Just as indentation increasing the readability of code, it also contributes to ambiguity. Nesting
happens when one control structure exists within another control structure, and possibly even
another control structure. When reading code that resides within many nested blocks, the
programmer must maintain an awareness of the pre-conditions that lead to the code being
executed. Although a compiler is especially gifted at maintaining a stack of unresolved control
structures, programmers are less so. Nesting becomes increasingly more ambiguous near the end
of the control structures where for example code can be executed at the conclusion of an if block
and prior to the conclusion of another if block.

public SomeMethod()
{
 for (int i = 1, i < 100, i++)
 {
 if (i > 10)
 {
 ... // Do something
 if (arg == someNumber)
 {
 ... // Do more
 }
 }
 }
}

Nesting becomes even more unreadable when code inside the structure stretches on for many lines
or, in extreme situations, up to a page. Using the complement of the conditional expression leads
to an early resolution of control structures and a flattening of the nesting.

if (i > 10)

becomes:

if (i <= 10)

C# Code Style Guide

25

A continue would be executed in order to start back at the top of the for block. This achieves a
flattening of the nests, and a conditional block is resolved as quickly as possible.

public SomeMethod()
{
 for (int i = 1, i < 100, i++)
 {
 // Guard
 if (i <= 10)
 {
 continue;
 }

 ... // Do something

 if (arg == someNumber)
 {
 ... // do more
 }
 }
}

Note: The Extract Method refactoring combined with the Consolidate Conditional Expression work
well to support the flattening of indentation in code blocks as well.

Debug Code
Debug code should not be stripped from the source base. If debug code significantly contributes to
the understanding and the maintenance of the code, then leave the debug code inside the class
definition. The compiler will strip the debug code from the DLL's when a class is compiled for
production.

Refactoring
Refactoring is a technique to restructure code in a disciplined way. Refactoring follows a set of
rules. These rules are named and published in a catalog in a similar fashion to Design Patterns.

Refactoring is not only a way to repair old code, or to make existing code more flexible, but it is
also a way to write new code based on a system of best practices. Not all refactorings are useful at
the outset, but many are, and knowledge of the techniques is invaluable.

The online version of the refactoring catalog can be found at
http://www.refactoring.com/catalog/index.html.

C# Code Style Guide

26

Conclusion

C# Code Style Guide

27

Using solid coding techniques and good programming practices to create high quality code plays
an important role in software quality. In addition, by consistently applying a well-defined coding
standard and proper coding techniques, and holding routine code reviews, a team of programmers
working on a software project is more likely to yield a software system that is easier to
comprehend and maintain.

