www.idesign.net

C# Coding Standard

Guidelines and Best Practices
Version 2.1

Author: Juval Lowy
www.idesign.net

-1-

©2005 IDesign Inc. All rights reserved

September 2005

www.idesign.net September 2005

Table of Content

1. Naming Conventions and Style

2 COUING PraCliCES......ouovurieiriiererereessisiresssseesesesssssessssssssssesssesssssssssssssssssessssssssssessssssssssssssssess 7
3 Project Settings and ProjeCt SLIUCLUIE......c.cuvvvvcecerirerceseeereesee st esesessssesessssessnens 14
4 Framework SPeCifiC GUIAEIINES.......cccovvrerererecrreseses st sessssssesessssssessssssseens 17
4.1 DALBACCESS.....coiciiiiiii i bbb b 17
4.2 ASP.NET and WED SErVICeS........ovmrirerenecee e ssssseseens 17
L U 1 =T |1 T [T 18
4.4 SEITAlIZALION....covreeeeereerereee e s e 20
A5 REMOLING c.eureeeeiriiereeirerisesesessesesssessssssssassssssssesssssessssesssessssssssssesssssesssssssssssssssssesssssnssnss 20
GRSt U T 21
A7 SYStEM.TIANSACLIONS......cueereeereeerereeseeisesesesesesesste e sessessesessssesesssssessssessssssssssssesssssnssnes 22
4.8 ENLEIPriSE SEIVICES ...vvereeereeeceeiresesseeisassssssssessssssssssssssssssssssssssssssssesssssssssssssssssesssssnssnss 23
5 RESOUICES.......coiiiiii bbb b 24
-2-

©2005 IDesign Inc. All rights reserved

www.idesign.net

Preface

A comprehensive coding standard is essential for a successful product delivery. The
standard helps in enforcing best practices and avoiding pitfalls, and makes knowledge
dissemination across the team easier. Traditionally, coding standards are thick, laborious
documents, spanning hundreds of pages and detailing the rationale behind every
directive. While these are dtill better than no standard at al, such efforts are usually
indigestible by the average developer. In contrast, the C# coding standard presented here
is very thin on the “why” and very detailed on the “what” and the “how.” | believe that
while fully understanding every insight that goes into a particular programming decision
may require reading books and even years of experience, applying the standard should
not. When absorbing a new developer into your team, you should be able to simply point
him or her at the standard and say: "Read this first." Being able to comply with a good
standard should come before fully understanding and appreciating it—that should come
over time, with experience. The coding standard presented next captures best practices,
dos and don'ts, pitfalls, guidelines, and recommendations, as well as naming conventions
and styles, project settings and structure, and framework-specific guidelines. Since | first
published this standard for C# 1.1 in 2003, it has become the de-facto industry standard
for C#and .NET development.

Juval Lowy
April 2005

-3-

©2005 IDesign Inc. All rights reserved

September 2005

www.idesign.net September 2005

1. Naming Conventionsand Style
Use Pascal casing for type and method names and constants:
public class Soned ass
{ const int Defaul tSize = 100;
publ i ¢ SorreMet hod()
{}
}
2. Usecamel casing for local variable names and method arguments.
i nt nunber;
voi d MyMet hod(i nt soneNurnber)
{}
3. Prefix interface names with |
interface M/ nterface
{...}

4. Prefix private member variables withm . Use Pascal casing for the rest of a member
variable name following the m .

public class Soned ass

{
}

Suffix custom attribute classeswith At t r i but e.

private i nt m Nunber ;

Suffix custom exception classeswithExcept i on.
Name methods using verb-object pair, such as ShowDi al og() .

© N o u

Methods with return values should have a name describing the value returned, such
asGet Object State().

9. Usedescriptive variable names.

a) Avoid single character variable names, suchasi ort.Usei ndex ort enp
instead.

b) Avoid using Hungarian notation for public or protected members.
c) Do not abbreviate words (such as numinstead of nunber).

10. Always use C# predefined types rather than the aliasesin the Sy st emnamespace.
For example:
obj ect NOT (hj ect
string NOT String
i nt NOT | nt 32

11. With generics, use capital letters for types. Reserve suffixing Ty pe when dealing
withthe .NET type Ty pe.
// Correct:

public class LinkedList<K T>

{...}
/1 Avoi d:
public class LinkedLi st <KeyType, Dat aType>

{...}

-4-

©2005 IDesign Inc. All rights reserved

www.idesign.net September 2005

12.
13.
14.
15.

16.

17.

18.
19.

20.

21.
22.
23.

24.

Use meaningful namespaces such as the product name or the company name.
Avoid fully qualified type names. Usethe usi ng statement instead.
Avoid puttingausi ng statement inside a namespace.

Group al framework namespaces together and put custom or third-party namespaces
underneath.

usi ng System

usi ng System Col | ecti ons. Generi c;
usi ng Syst em Conponent Model ;

usi ng System Dat a;

usi ng MyConpany;

using M@ntrols;

Use delegate inference instead of explicit delegate instantiation.

del egat e voi d SomeDel egat e() ;
publ i c voi d SoneMet hod()

{...}
SorreDel egat e sonmeDel egate = SoneMet hod;

Maintain strict indentation. Do not use tabs or nonstandard indentation, such as one
space. Recommended val ues are three or four spaces, and the value should be
uniformed across.

Indent comment at the same level of indentation as the code you are documenting.

All comments should pass spell checking. Misspelled comments indicate sloppy
development.

All member variables should be declared at the top, with one line separating them
from the properties or methods.

public class M/Q ass

{
int m Nurber ;
string mNang;
publ i c voi d SomeMet hod1()
{}
public voi d SomeMet hod2()
{}

}

Declarealocal variable as close as possibleto itsfirst use.
A file name should reflect the classit contains.

When using partial types and allocating a part per file, name each file after the
logical part that part plays. For example:

//1n MCl ass. cs
public partial class MQ ass

{...}
//1n M/Q ass. Desi gner.cs
public partial class MQ ass

{...}
Always place an open curly brace ({) in anew line.

-5-

©2005 IDesign Inc. All rights reserved

www.idesign.net September 2005

25. With anonymous methods, mimic the code layout of aregular method, aligned with
the anonymous del egate declaration. (complies with placing an open curly bracein a

new line):

del egat e voi d SoneDel egat e(string someString);
/] Correct:

public voi d | nvokeMet hod()

{

Sonelel egat e sonelel egat e = del egat e(string nane)
{
MessageBox. Show(nane) ;
sonelel egat e(" Juval ") ;

}
/1 Avoi d
publ i c voi d | nvokeMet hod()

Sonelel egat e sonelel egat e = del egat e(string nane) { MessageBox. Show(hane) ; };
soneDlel egat e(" Juval ") ;

}

26. Use empty parentheses on parameter-less anonymous methods. Omit the parentheses
only if the anonymous method could have been used on any delegate:
del egat e voi d SoneDel egat e() ;

/1 Correct
Sorelel egat e soneDlel egatel = del egat g()
{
MessageBox. Show(" Hel | 0") ;
b
/1 Avoi d
Sorrelel egat e soneDlel egatel = del egat e
{
MessageBox. Show(" Hel | 0") ;
s

-6-

©2005 IDesign Inc. All rights reserved

www.idesign.net September 2005

N

10.

11.

12.

13.

14.

15.
16.

Coding Practices

Avoid putting multiple classesin asinglefile.

A singlefile should contribute types to only a single namespace. Avoid having
multiple namespacesin the samefile.

Avoid files with more than 500 lines (excluding machine-generated code).
Avoid methods with more than 25 lines.

Avoid methods with more than 5 arguments. Use structures for passing multiple
arguments.

Lines should not exceed 80 characters.
Do not manually edit any machine-generated code.

a) If modifying machine generated code, modify the format and style to matchthis
coding standard.

b) Usepartia classes whenever possible to factor out the maintained portions

Avoid comments that explain the obvious. Code should be self-explanatory. Good
code with readabl e variable and method names should not require comments.

Document only operational assumptions, algorithm insights and so on.
Avoid method-level documentation.

a) Useextensive external documentation for APl documentation.

b) Usemethod-level comments only astool tipsfor other devel opers.

With the exception of zero and one, never hard-code anumeric value; always declare
aconstant instead.

Usetheconst directive only on natural constants such as the number of days of the
week.

Avoid usingconst onread-only variables. For that, usether eadonl y directive.
public class M/Q ass

{

public const int DayslnWek = 7,
public readonly int Nunber;

public M/Q ass(int soneVal ue)

{
}

Nunber = soneVal ue;

}
Assert every assumption. On average, every fifth lineisan assertion.
usi ng System D agnosti cs;

obj ect Get (hj ect ()
{...}

obj ect soneChj ect = Get (hj ect();

Debug. Assert (someChj ect != null);
Every line of code should be walked through in a“white box” testing manner.
Catch only exceptions for which you have explicit handling.

-7-

©2005 IDesign Inc. All rights reserved

www.idesign.net September 2005

17

18.
19.
20.

21.
22.
23.
24,
25.

26.

27.

28.

29

. Inacat ch statement that throws an exception, always throw the original exception
(or another exception constructed from the original exception) to maintain the stack
location of the original error:

cat ch(Exception exception)

MessageBox. Show(except i on. Message) ;
throw, //Sanme as throw exception;

}

Avoid error code as method return values.

Avoid defining custom exception classes.

When defining custom exceptions:

a) Derivethe custom exception from Except i on.

b) Provide custom serialization.

Avoid multiple Mai n() methodsin asingleassembly.

Make only the most necessary types public, mark othersasi nt er nal .
Avoid friend assemblies, asthey increase inter-assembly coupling.
Avoid code that relies on an assembly running from a particular location.

Minimize code in application assemblies (EXE client assemblies). Use classlibraries
instead to contain business logic.
Avoid providing explicit values for enums.

/1 Correct
publ i ¢ enum Gol or

{

}
/] Avoi d

publ i ¢ enum Col or

{

}
Avoid specifying atype for an enum.

/1 Avoi d
public enumGolor : |ong

{

}
Always use acurly brace scopeinani f statement, evenif it conditionsasingle
statement.

. Avoid using the trinary conditional operator.

Red, G een, Bl ue

Red = 1,Geen = 2,Blue = 3

Red, G een, Bl ue

-8-

©2005 IDesign Inc. All rights reserved

www.idesign.net September 2005

30. Avoid function callsin Boolean conditional statements. Assign into local variables
and check on them.

bool | sEveryt hi ngCK()

{...}

/1 Avoi d:

i f (1sEverythi ngCK())

{...}

/1 Correct:

bool ok = IsEverythi nglK();
i f (ok)
{...}
31. Always use zero-based arrays.

32. Always explicitly initialize an array of referencetypesusing af or loop.
public class M/Q ass

{}

const int ArrraySize = 100;

M/d ass[] array = new Myd ass[ArrraySi ze] ;
for(int index = 0; index < array. Length; index++)

array[i ndex] = new M/ ass();

}
33. Do not provide public or protected member variables. Use propertiesinstead.

34. Avoid using the newinheritance qualifier. Useover r i de instead.

35. Alwaysmark public and protected methodsasvi rt ual inanon-sealed class.
36. Never use unsafe code, except when using interop.

37. Avoid explicit casting. Usethe as operator to defensively cast to atype.

Dog dog = new Ger manShepher d() ;

Ger manShepherd shepherd = dog as Ger nanShepher d;
i f (shepherd !'= null)

{...}

38. Always check adelegate for nul | beforeinvokingit.

-9-

©2005 IDesign Inc. All rights reserved

www.idesign.net

39. Do not provide public event member variables. Use event accessorsinstead.

40

41

42

43
44
45
46

47
48
49
50
51

public class MPublisher

{
M/Del egat e m SoneEvent ;
public event M/Del egate SoneEvent

add
{

m SormeEvent += val ue;
}
renove

m SoneEvent -= val ue;
}

}

}

. Avoid defining event-handling delegates. Use Event Handl er <T> or
Generi cEvent Handl er instead. Gener i cEvent Handl er isdefinedin
Chapter 6 of Programming .NET Components 2™ Edition.

. Avoid raising events explicitly. Use Event sHel per to publish events defensively.
Event sHel per ispresented in Chapter 6-8 of Programming .NET Components

2™ Edition.

. Always useinterfaces. See Chapters 1 and 3 in Programming .NET Components 2™

Edition.

. Classes and interfaces should have at least 2:1 ratio of methods to properties.

. Avoid interfaces with one member.

. Striveto have three to five members per interface.
. Do not have more than 20 members per interface. Twelveis probably the practical

limit.
. Avoid events as interface members.

. When using abstract classes, offer an interface as well.

. Exposeinterfaces on class hierarchies.

. Prefer using explicit interface implementation.
. Never assume atype supports an interface. Defensively query for that interface.

SoneType obj 1;
I Ml nterface obj 2;

obj 2 = obj1 as | M/Interface;
if(obj2 !'=null)

obj 2. Met hod1() ;
}

el se

}

-10-

©2005 IDesign Inc. All rights reserved

/* Some code to initialize obj1, then: */

//Handl e error in expected interface

September 2005

www.idesign.net September 2005

52.
53.

54,

55.
56.

57.
58.
59.
60.
61.

62.

Never hardcode stringsthat will be presented to end users. Use resources instead.
Never hardcode stringsthat might change based on deployment such as connection
strings.

UseString. Enpty instead of " " :

// Avoi d
string name

/] Correct
string name = String. Enpty;

When building along string, use St r i ngBui | der ,notstri ng.

Avoid providing methods on structures.

a) Parameterized constructors are encouraged.

b) Can overload operators.

Always provide a static constructor when providing static member variables.
Do not use late-binding invocation when early-binding is possible.

Use application logging and tracing.

Never usegot o unlessinaswi t ch statement fall-through.

Alwayshaveadef aul t caseinaswi t ch statement that asserts.

i nt nunber = SoneMet hod();
swi t ch(nunber)
{ case 1L
Trace. WitelLine("Case 1:");
br eak;
case 2.
Trace. WiteLine("Case 2:");
br eak;
defaul t:
Debug. Assert (fal se);
br eak;

}

Do not usethet hi s reference unlessinvoking another constructor from within a
constructor.

/| Exanpl e of proper use of 'this’
public class M/Q ass

{
publ ic M/ ass(string nessage)
{}
public Mdass() : this("Hellao")
{}
}
-11-

©2005 IDesign Inc. All rights reserved

www.idesign.net

63. Do not usethe base word to access base class members unless you wish to resolve
aconflict with a subclasses member of the same name or when invoking a base class

64.
65.
66.

67.

68.

constructor.

/| Exanpl e of proper use of ’base’
public class Dog

{
publ i ¢ Dog(string narre)
{}
virtual public void Bark(int howLong)
{}
public class GermanShepherd : Dog

{

publ i ¢ GermanShepherd(string nane): base(nane)

{}
override public void Bark(int howLong)

base. Bar k(howLong) ;

}
}

Do not use GC. AddMenor yPressure() .
Do not rely onHandl eCol | ect or .

Implement Di spose() andFi nal i ze() methods based on the templatein
Chapter 4 of Programming .NET Components 2" Edition.

Always run code unchecked by default (for the sake of performance), but explicitly

in checked mode for overflow- or underflow-prone operations:
int Cal cPower (i nt nunber, int power)

{

int result = 1;
for(int count = 1;count <= power;count ++)

checked

result *= nunber;
}
}
return result;
}

Avoid explicit code exclusion of method calls (#i f ..#endi f). Use conditional
methods instead:

public class M/Q ass

[Condi tional ("M/Speci al Condition")]
public void M/Mthod()
{}

}

-12 -

©2005 IDesign Inc. All rights reserved

September 2005

www.idesign.net

69.

70.

71.
72.
73.

74.

Avoid casting to and from Syst em Obj ect in codethat uses generics. Use
constraints or the as operator instead:

cl ass Soned ass

{1
/] Avoi d:

cl ass A ass<T>

{
voi d SorreMet hod(T t)

object tenp = t;
Soned ass obj = (Somed ass)t enp;
}

}
/1 Correct:
class M/d ass<T> where T : Soned ass

voi d SorreMet hod(T t)

Soned ass obj =1t;
}
}

Do not define constraints in generic interfaces. Interface level-constraint can often be
replaced by strong-typing.
public class Qustomner

{...}

/1 Avoi d:

public interface IList<T> where T : Qustoner
{...}

/1 Correct:

public interface | CustomerList : |List<CQustomner>
{...}

Do not define method-specific constraintsin interfaces.
Do not define constraints in del egates.

If aclass or amethod offers both generic and non generic flavors, always prefer
using the generics flavor.

When implementing a generic interface that derived from an equivalent non-generic
interface (such as | Enuner abl e<T>), use explicit interface implementation on all
methods, and implement the non-generic methods by delegating to the generic ones:
class MyQol | ecti on<T> : | Enurrer abl e<T>

{
| Enurrer at or <T> | Enuner abl e<T>. Get Enuner at or ()
{...}
| Enurrer at or | Enuner abl e. Get Enurrer at or ()
| Enuner abl e<T> enunerabl e = this;
return enurrer abl e. Get Enurrer at or () ;
}
}

-13-

©2005 IDesign Inc. All rights reserved

September 2005

www.idesign.net

3 Project Settingsand Project Structure
1. Always build your project with warning level 4

yApp

Application

All Configurations r Active [y CPU) r

Buld Everts I
Debug
Seltings
Ay CPU =l
Resouices

Reference Paths
Signing
Security
Publish

Code Analysis

EOinteron

2. Treat warnings as errorsin the Release build (note that thisis not the default of
Visual Studio). Although it isoptional, this standard recommends treating warnings
aserrorsin Debug builds aswell.

yApp

Application

Al Configurations r Active [any CPU) r

Build Events

I

[ebug
Seftings

Ay CPU =]
Resources

Reference Pathes
Signing
Security

Publish

Code Analpsis

-14-

©2005 IDesign Inc. All rights reserved

September 2005

www.idesign.net September 2005

3. Avoid suppressing specific compiler warnings.

4. Alwaysexplicitly state your supported runtime versionsin the application
configuration file.

<?xm version="1.0"?>
<confi gur at i on>
<startup>
<suppor t edRunt i ne versi on="v2. 0. 5500. 0"/ >
<suppor t edRunt i me ver si on="v1. 1. 5000. 0"/ >
</ startup>
</ configuration>

Avoid explicit custom version redirection and binding to CLR assemblies.
Avoid explicit preprocessor definitions (#def i ne). Use the project settings for
defining conditional compilation constants.

7. Do not put any logic inside Assemblylnfo.cs.
Do not put any assembly attributesin any file besides Assemblylnfo.cs.

Populate al fields in Assemblylnfo.cs such as company name, description, and
copyright notice.

10. All assembly referencesin the same solution should use relative path.
11. Disallow cyclic references between assemblies.
12. Avoid multi-module assemblies.

13. Avoid tampering with exception handling using the Exception window
(Debug|Exceptions).

14. Strive to use uniform version numbers on all assemblies and clients inthe same
logical application (typically a solution). Use the Solutionlnfo.cs technique from
Chapter 5 of Programming .NET Components 2™ Edition to automate.

Solution Explorer - Solution It . K1
Lookjn [(] LinkedFilesDemo | e @ X £ ER - Todls~ =
. |1 ClassLibrary1 i d
% %aﬁtﬂawz @ Solution "MyApp' [3 projects]
¥ 5 clutionlnfo.cs SRR | S olution [tems
= - o] Salutionlnfo.cs
M FEEEE 7 |58 ClassLibrary?
m 'E huyClassLibran
e - [Properties
e] Assemblylrfo.ca
*] > H Solutionlnfo.cs
IFaseil=s - [5] References
& Ee—— 5 Sl © e o] MyClasst.cs
Mok e 7] = 5 MyClient
Places Files of bpe: [4 Fles [“.cx) =l Open E| i Procitics
| Ei::nim” - 2] Assemblylnfo.cs
B Resources resy
N E- Settings. settings
. @,ﬁ Salutionlnfo.cs
[+ +g] References
- [E] MyClient.cs
-] Program.cs
-15-

©2005 IDesign Inc. All rights reserved

www.idesign.net

15. Link all solution-wide information to a global shared Solutionlnfo.csfile.

16. Name your application configuration file as App.config, and include it in the project.

17. Modify Visual Studio 2005 default project structure to comply with your project
standard layout, and apply uniform structure for project folders and files.

18. A Release build should contain debug symbals.

Advanced Build Settings 2] x|

General
Language Werzsion: Idefault j
Internal Compiler Errar Feparting: Iprompt j
[~ Check for anithmetic overflowunderflow
[~ Do not reference mecorlib.di

Output
Debug Infa: s
File Alignment: 4038 -]
DLL Baze Address: IEI:-:EIDdEIDIJEID

Ok | Cancel |

19. Alwayssign your assemblies, including the client applications.

20. Use password-protected keys.

Create Strong Mame Key |
K.ey file name:
IM_I,IK.E_I,IS

[Protect my key file with a password

Enter password:

Confirm pazsword:

o]

Cancel

-16 -

©2005 IDesign Inc. All rights reserved

September 2005

www.idesign.net September 2005

4 Framework Specific Guidelines

4.1 Data Access

1. Always usetype-safe data sets or datatables. Avoid raw ADO.NET.

2. Always use transactions when accessing a database.
a) Alwaysuse Enterprise Services or System.Transactions transactions
b) Do not use ADO.NET transactionsby enlisting the database explicitly.

3. Alwaysusetransactionisolation level set to Serializable. Management decision is
required to use anything else.

4. Do not use the Data Source window to drop connections on windows forms,
ASP.NET forms or web services. Doing so couples the presentation tier to the data
tier.

5. Avoid SQL Server authentication. Use Windows authentication instead.

Run components accessing SQL Server under separate identity from that of the
calling client.

7. Always wrap your stored proceduresin a high level, type safe class. Only that class
invokes the stored procedures. Let Visual Studio 2005 type-safe data adaptors
automate as much of that as possible.

8. Avoid putting any logic inside a stored procedure. If you have anything more
complex than simple switching logic to vary your query based on the parameter
values, you should consider putting that logic in the business logic of the consuming
code.

4.2 ASP.NET and Web Services

1. Avoid putting codein ASPX files of ASP.NET. All code should bein the code-
beside partia class.

2. Codein code beside partial class of ASP.NET should call other components rather
than contain direct business| ogic.

Always check asession variablefor nul | before accessing it.

In transactional pages or web services, always store session in SQL server.

Avoid setting the Auto-Postback property of server controlsin ASP.NET to True.
Turn on Smart Navigation for ASP.NET pages.

N o ok w

Striveto provide interfaces for web services. See Appendix A of Programming .NET
Components 2™ Edition.

8. Always provide namespace and service description for web services.
9. Always provide adescription for web methods.
10. When adding aweb service reference, provide meaningful name for the location.

-17 -

©2005 IDesign Inc. All rights reserved

www.idesign.net

11.

12.

In both ASP.NET pages and web services, wrap a session variablesin alocal
property. Only that property is allowed to access the session variable, and the rest of
the code uses the property, not the session variable.

public class Calculator : VebService

{
int Menory

{
get

{
int menory = 0;
obj ect state = Session["Menory"];
if(state '=null)

{

nenory = (int)state;

ret urn menory,

}

set

Sessi on["Menory"] = val ue;

}

}
[VébMet hod(Enabl eSessi on=true)]
public voi d MenoryReset ()

{
Menory = O;

}
}

Always modify client-side web service wrapper class to support cookies, since you
have no way of knowing whether the service uses Session state or not.

public class Calculator : SoapHtpdientProtocol

{
public Cal cul ator()

Cooki eCont ai ner = new Syst em Net . Cooki eCont ai ner () ;
ul =...;

4.3 Multithreading

1.

Use Synchronization Domains. See Chapter 8in Programming .NET Components
2" Edition. Avoid manual synchronization because that often leads to deadlocks and
race conditions.

Never call outside your synchronization domain.

Manage asynchronous call completion on a callback method. Do not wait, poll, or
block for completion.

Always name your threads. The name istraced in the debugger Threads window,
making debug sessions more productive.

Thread current Thread = Thread. Qurrent Thread;
string threadName = "Main U Thread";
current Thread. Nanme = t hr eadNang;

-18 -

©2005 IDesign Inc. All rights reserved

September 2005

www.idesign.net September 2005

10.

11.

12.
13.
14.

15.
16.

17.

18.

19.

20.

Do not call Suspend() or Resune() onathread.
Do not call Thr ead. Sl eep() , except in the following conditions:

a) Thread. Sl eep(0) isacceptable optimization technique to force a context
switch.

b) Thread. Sl eep() isacceptablein testing or simulation code.
Do not call Thr ead. Spi nVi t () .

Do not call Thr ead. Abort () toterminatethreads Use a synchronization object
instead to signal the thread to terminate. See Chapter 8 in Programming .NET
Components 2™ Edition.

Avoid explicitly setting thread priority to control execution. Y ou can set thread
priority based on task semantic, such as below normal
(ThreadPriority. Bel owNor mal) for ascreen saver.

Do not read the value of the Thr eadSt at e property. Use Thr ead. | sAl i ve()
to determine whether the thread is dead or alive.

Do not rely on setting the thread type to background thread for application shutdown.
Use awatchdog or other monitoring entity to deterministically kill threads.

Do not use thread local storage unless thread affinity is guaranteed.

Donot call Thread. MenoryBarrier ().

Never call Thr ead. Joi n() without checking that you are not joining your own
thread.
voi d Wi t For Thr eadToDi e(Thread t hr ead)

Debug. Assert (Thread. Qurrent Thread. Get HashCode() != thread. Get HashCode());
t hread. Joi n();
}

Alwaysusethel ock() statement rather than explicit Moni t or manipulation.
Always encapsulatethel ock() statement inside the object it protects.

public class M/Q ass
public voi d DoSorret hi ng()
|l ock(this)

{...}
}

}

Y ou can use synchronized methods instead of writing thel ock() statement
yourself.

Avoid fragmented locking (see Chapter 8 of Programming .NET Components 2™
Edition).

Avoid usingaMoni t or towait or pulse objects. Use manual or auto-reset events
instead.

Do not use volatile variables. Lock your object or fields instead to guarantee
deterministic and thread-safe access. Do not use Thr ead. Vol ati | eRead(),
Thread. Vol atil eWite(),orthevol ati | e modifier.

-19-

©2005 IDesign Inc. All rights reserved

www.idesign.net

21.
22.

Avoid increasing the maximum number of threads in the thread pool.

Never stack | ock statements because that does not provide atomic locking. Use
Wai t Handl e. Wi t Al | () instead.

M/d ass obj 1 = new M/d ass();
M/d ass obj 2 = new M/A ass();
M/d ass obj 3 = new M/A ass();
/1 Do not stack |ock statenents
| ock(obj 1)

| ock(obj 2)

| ock(obj 3)

{

obj 1. DoSoret hi ng() ;
obj 2. DoSonet hi ng() ;
obj 3. DoSonet hi ng();

}

4.4 Serialization

1. Prefer the binary formatter.

2. Mark serialization event handling methods as private.

3. Usethegenericl Generi cFor mat t er interface. See Chapter 9 of Programming
.NET Components 2" Edition.

Mark non-sealed classes as serializable.

5. Whenimplementing | Deseri al i zati onCal | back on anon-sealed class,
make sure to do so in away that allowed subclassesto call the base class
implementation of OnDeseri al i zat i on() .See Chapter 3 of Programming .NET
Components 2™ Edition.

Always mark un-serializable member variables as non serializable.
Always mark delegates on aserialized class as non-serializable fields;
[Serializabl e]
public class M/Q ass

[field NonSerialized]

public event EventHandl er M/Event;
}

4.5 Remoting

1. Prefer administrative configuration to programmatic configuration.

2. Alwaysimplement| Di sposabl e onsingle call objects.

3. Alwaysprefer aTCP channel and a binary format when using remoting, unless a
firewall is present.

4. Alwaysprovideanul | leasefor asingleton object.

public class M/S ngleton : Marshal ByRef (hj ect

{
public override object Initializel fetineService()
{
return null ;
}
}

-20-

©2005 IDesign Inc. All rights reserved

September 2005

www.idesign.net September 2005

5. Always provide a sponsor for aclient activated object. The sponsor should return the
initial leasetime.
6. Always unregister the sponsor on client application shutdown.
7. Always put remote objectsin class libraries.
8. Avoid using SoapSuds.
9. AvoidhostinginlIS.
10. Avoid using uni-directional channels.
11. Alwaysload aremoting configuration fileinVai n() evenif thefileisempty, and
the application does not use remoting.
static void Min()
{
Renot i ngConf i gurat i on. Confi gur e(" M/App. exe. config");
/* Rest of Main() */
}
12. AvoidusingAct i vat or. Get Cbj ect () and
Acti vator. Creat el nstance() for remote objects activation. Use new
instead.
13. Alwaysregister port O on the client side, to allow callbacks.
14. Alwayselevatetype filtering to full on both client and host to allow callbacks.
4.6 Security
1. Alwaysdemand your own strong name on assemblies and components that are
private to the application, but are public (so that only you can use them).
public class PublicKeys
{
public const string M/Conmpany = "1234567894800000940000000602000000240000" +
"52534131000400000100010007D1FAS7 CAAEDOFO" +
" A32E84 AAOFAEFDODESESFDGAEC3F87FB03766C83" +
" 499921 EB23BE79ADO D5 DOCLDDOAD23613210290" +
" 0B723CF980957FCAEL77108FC507774F29E8320E" +
" 92EAOSECE4ES21 QASEFESF1645C4AQ0CI3C1ABI9" +
"' 2850622CAAG52C1DFADG3D745D6F2DESF1 7ESEAF" +
"OFC4963D261C8A12436518206DC093344D5AD293" ;
}
[StrongNanel dent i t yPer mi ssi on(Securi t yActi on. Li nkDenand,
Publ i ckey = Publ i cKeys. M/Conpany)]
public class M/Q ass
{...}
2. Apply encryption and security protection on application configuration files.
3. When importing an interop method, assert unmanaged code permission, and demand

appropriate permission instead.
[D11nport ("user32*, Ent ryPoi nt =" MessageBoxA")]
private static extern int Show(IntPtr handl e, string text,string caption,
i nt nsgType);
[SecurityPerm ssion(SecurityAction.Assert, lhmanagedCode = true)]
[U Per m ssi on(SecurityActi on. Dermand,
Wndow = U Per m ssi onW ndow. Saf eTopLevel Wndows)]

-21-

©2005 IDesign Inc. All rights reserved

www.idesign.net September 2005

10.

public static void Showstring text, string caption)

{
Show(IntPtr. Zero, text, caption, 0);

}

Do not suppress unmanaged code access viathe
Suppr essUnmanagedCodeSecuri t y attribute.

Do not usethe/ unsaf e switch of TIblmp.exe. Wrap the RCW in managed code so
that you could assert and demand permissions declaratively on the wrapper.

On server machines, deploy a code access security policy that grants only Microsoft,
ECMA, and self (identified by a strong name) full trust. Code originating from
anywhere elseisimplicitly granted nothing.

On client machines, deploy a security policy which grants client application only the
permissions to execute, to call back the server and to potentially display user
interface. When not using ClickOnce, client application should be identified by a
strong name in the code groups.

To counter aluring attack, always refuse at the assembly level all permissions not
required to perform the task at hand.
[assenbl y: U Perm ssi on(Securi t yActi on. Request Ref use,

W ndow=U Per m ssi onW ndow. Al | Wndows)]

Always set the principal policy in every Mai n(') method to Windows

public class M/Q ass

static void Min()

{
AppDonai n current Domai n = Thr ead. Get Domai n() ;
cur rent Donai n. Set Pri nci pal Pol i cy(Princi pal Pol i cy. WndowsPri nci pal) ;

}

/] ot her net hods

}

Never assert a permission without demanding a different permission inits place. See
Chapter 12 in Programming .NET Components 2™ Edition.

4.7 System.Transactions

1.
2.
3.

Alwaysdisposeof aTr ansact i onScope object.
Inside a transaction scope, do not put any code after the call to Conpl et e() .

When setting the ambient transaction, always save the old ambient transaction and
restore it when you are done.

In Release builds, never set the transaction timeout to zero (infinite timeout).

When cloning atransaction, always use
Dependent Cl oneOpti on. Bl ockCommi t Unti | Conpl et e.

Create anew dependent clone for each worker thread. Never passthe same
dependent clone to multiple threads

Do not pass atransaction cloneto the Tr ansact i onScope's constructor.

Always catch and discard exceptions thrown by a transaction scope that is set to
Transacti onScopeOpti on. Suppr ess.

-22 -

©2005 IDesign Inc. All rights reserved

www.idesign.net September 2005

4.8 Enterprise Services

1. Do not catch exceptionsin atransactional method. Usethe Aut oConpl et e
attribute. See Chapter 4 in COM and .NET Component Services.

2. Donotcall Set Conpl et e(),Set Abort (), andthelike. Usethe
Aut oConpl et e attribute.

[Transacti on]
public class M/Conponent : Servi cedConponent

[Aut oConpl et €]
public void M/Met hod(l ong obj ectldentifier)
{...}

}
3. Alwaysoverride CanBePool ed and returnt r ue (unless you have a good reason
not to return to pool)

public class M/Conponent : Servi cedConponent

{
protected override bool CanBePool ed()

return true;

}

}

4. Alwayscal Di spose() explicitly on apooled objects unless the component is
configured to use JITA aswell.

5. Never call Di spose() whenthecomponent usesJITA.

Always set authorization level to application and component.

Set authentication level topr i vacy onall applications.

[assenbl y: ApplicationActivation(ActivationQption. Server)]
[assenbl y: ApplicationAccessControl (
true, //Authorization
AccessChecksLevel =AccessChecksLevel ot i on. Appl i cati onConponent ,
Aut hent i cati on=Aut henti cati onQpti on. Pri vacy,
| nper sonat i onLevel =l nper sonat i onLevel otion. I dentify)]

Set impersonation level on client assembliestol dentity.

Always set Conponent AccessCont r ol attribute on serviced components to
true (thedefaultistrue)

[Conponent AccessControl |
public class M/Conponent : Servi cedConponent

{...}
10. Alwaysadd tothe Var shal er rolethe Everyone user

| [assenbl y: SecurityRol e("Marshal er", Set Ever yoneAccess = true)] |
11. Apply Secur eMet hod attribute to all classes requiring authentication.

[Secur eMet hod]
public class M/Gonponent : Servi cedConponent

{...}

-23-

©2005 IDesign Inc. All rights reserved

www.idesign.net

5 Resources

5.1 Programming .NET Components 2" Edition

By Juval Lowy, O'Reilly 2005
ISBN: 0-596-10207-0

dewi tos BRailel Afcuieetonivnenfnl,
Extonibiy eoned Reviserble NET Apgalicontioins

Programmii

NET

Components

O'REILLY" puvead fiay

5.2 The Advanced .NET Master Class

Authored by Juval Lowy, this intense class is world-acclaimed due to its selection of
topics, the depth of the discussion, and its focus on best practices, design guidelines,
original tools and utilities, pitfalls, tipsand tricks.

More at www.idesign.net
5.2 ThelDesign CodeLibrary

The IDesign code library contains more than a hundred demos, tools and utilities
developed by IDesign associates for over five years of applying .NET and educating the
industry about it. The library covers C# programming, essential .NET concepts, .NET
application frameworks, system issues, Enterprise Services and Indigo. The utilitiesare a
productivity -enhancing tool, or they compensate for some oversight in the original design
of .NET or its application frameworks. The demos are used during the .NET Master Class
to demystify technical points, aslab exercises or to answer questions.

More at www.idesign.net

©2005 IDesign Inc. All rights reserved

=24 -

September 2005

