Coding Standard: C#
Philips Medical Systems - Software / SPI

AUTHOR: Vic Hartog and Dennis Doomen

DOC. ID: XJS155-8301

REV. LEVEL.: 1.3

DATE: 2005-05-19

STATUS: Authorized

Authorization by: CCB Coding Standards

Reviewers: CCB Coding Standards

Commentators: Paul Jansen (TIOBE Software)

Copy: Archive, Bangalore, Cleveland

Doc.file: gemrcsharpcs_ext.doc[saved: 03 Oct 2005 23:09]
Draft: Reviewers: You will be invited for a review meeting.

Commentators: Comments within 2 weeks to author.

Concept: Reviewers: Comments within 2 weeks to author.

| Authorized: | This is your personal copy. Destroy all previous levels

Philips Medical Systems

I I z l \ D Philips’ proprietary, ? 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 2 of 48
For External Use 2005-05-19

Abstract

This coding standard for the C# language is mandatory for PMS. The objective of this coding standard is to have
a positive effect on

& esAvoidance of errorg/bugs, especially the hard-to-find ones.

& esMaintainability, by promoting some proven design principles.

& esMaintainability, by requiring or recommending a certain unity of style.

& =Performance, by dissuading wasteful practices.

#=Rules and recommendations are given that promote reliability and maintainability.

External Use of this Document

The C# coding standard as defined by Philips Medical Systems and published via the TIOBE website
(www..tiobe.com) may be used "as-is" by any interested party.

Y ou may copy, adapt, and redistribute this document for non-commercial use or for your own internal usein a
commercial setting. However, you may not republish this document, nor may you publish or distribute any
adaptation of this document for other than non-commercial use or your own internal use, without first obtaining
express written approval from Philips Medical Systems. Philips Medical Systems will not be liable for any direct,
indirect, special or consegquential damages arising out of any use of the document or the performance or
implementation of the contents thereof.

Please send questions and suggestions about the C# coding standard and/or its code checker ClockSharp to
info@tiobe.com.

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 3 of 48
For External Use 2005-05-19
R o o 11 Tox 1 o o PP RRRSRR 7
1.1. (@ o] o 1Y TSR TP ST PRPO PRI 7
1.2. o0 o TP PP PP PR 7
13 L 0= PRSI 7
1.3 1. SOUICES OF INSPITALION ...ecuveeiieieiieeiie sttt ettt et e e e et e s b e san e e bt e saeesaneebeesneenaneans 7
T T 1 = 111 1 R 8
14. APPHCADITTTY ...ttt sttt e b sae e et e e b e e e e e ne e neennreen 8
15. HISLOMY ettt b ettt b e a ettt e b e e nan e n e b e e e b e e neennreens 8
1.6. ez 00 Y00 01 107 o | S 8
1.7. [N [o] = 1700 o0 1Y/ 011 o] SRS 9
0t O | =R 9
A2 S0 o010 =0 R 9
0 T O 0= o = o = TR 9
O = o 1 | = o = Y/ = .S 9
175, EXAIMPIES....ce ittt ettt he ettt he e e e bt e ae e nnn e be e e nnnean 9
18 Definition of terms and abbreviationS............ccvi e 9
1.9 L L= L= 0101 PRRS 9
2. GENENAI TUIBS.....eeee e e e e s e e e s e e e e e e e e nreeeas 11
2.1 L@ = YT 11
2.2. Rules and RECOMMENUALIONS..........coiiiieiiiee et e e et e e snre e e snreesnees 11
221. Rule2@102: Every time a recommendation is not followed, this must have a good reason. 11
2.2.2. Rule2@105: Do not mix code from different providersinonefile..........cccooevieiiiiinieeneee 11
3. NamMIiNQG CONVENTIONS.ccciuiiieiiiieeciiee e et e e st e et e e e see e e enre e e srsee e e ensreeeensreeeeneeas 12
3.1 L@ = YT 12
3.2 Rules and RECOMMENUALIONS..........ciiiiieiiiee e e e e e e snae e e snreeenees 13
3.21. Rec. 3@101: Use US-English for naming identifiers.ooveiiiiiiiiienie e 13
3.22. Rule3@102: Use Pascal and Came casing for naming identifiers...........ccooovvveeneenieniieeseennn 13
3.2.3. Rule3@103: Do not use Hungarian notation or add any other typeidentification to identifiers. 13
3.24. Rule3@104: Do not prefix member fieds.........cooeiiiiiiiiie e 13
3.25. Rule3@105: Do not usecasing to differentiate identifiers.ccccecee e ivcee e, 13
3.2.6. Rec. 3@106: Use abbreviations With Care..........coooooiiiciiiiiiiie e 14
3.2.7. Rule3@107: Do not use an underscore in identifiers.ueevveiiiieciieeiiiee e, 14
3.28. Rec. 3@108: Name an identifier according to its meaning and Not itS type.........cccoververiveeneenne 14
3.29. Rule3@109: Name namespaces according to a well-defined pattern.cccoceeveeiienieeneene 14
3.2.10. Rule3@110: Do not add asuffix toacl ass Or St r UCt NAME......cceeevieeeeeeiie s 15
3.2.11. Rec. 3@111: Useanoun or anoun phraseto nameacl ass or St rucCtccoccceevceeevveeennen, 15
3.2.12. Rule3@113: Prefix interfaces With the letter |, 15
3.2.13. Rec. 3@120: Use similar names for the default implementation of aninterface.............ccee...... 15
3.2.14. Rule3@122: Suffix names of attributeswith At tri but €. ...oooccvieeeiie, 15
3.2.15. Rule3@201: Do not add an Enumsuffix to an enumeration type.cccceveverveeeneereennieeneenen 15
3.2.16. Rule3@202: Use singular names for enumeration tyPes.cocveveerrieeneeniessieesee e 15
3.2.17. Rule3@203: Use a plural namefor enumerations representing bitfields.ccooevceerieeneenne. 15
3.2.18. Rec. 3@204: Do not use letters that can be mistaken for digits, and viceversa.cccee.eee... 16
3.2.19. Rule3@301: Add Event Handl er to ddegatesrelated to events.cccccveeveeeevcieecciee e, 16
3.2.20. Rule3@302: Add Cal | back to delegates rdated to callback methods............ccccoeceeevveeeneen. 16
3.2.21. Rule3@303: Do not add aCal | back or similar suffix to callback methods..........cccceeeunneee. 16
3.2.22. Rec. 3@304: Use averb (gerund) for Naming an VENL............cooeeveerrieeneesieesieesiee e 16
3.2.23. Rule3@305: Do not add an Event suffix (or any other type-related suffix) to the name of an
LS Y= | PP TP PPPTPPRP 16
3.2.24. Rule3@306: Usean— ng and —ed form to express pre-events and post-events............c..e..... 16
3.2.25. Rule3@307: Prefix an event handler With Onl. ..o 17

I RAD

Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 4 of 48

For External Use 2005-05-19
3.2.26. Rule3@401: Suffix exception classes With EXCEPL T ON. ..ceoveiiiiiiierieeeeeee e 17
3.2.27. Rule3@402: Do not add code-archive related prefixes to identifiers.ccocceeveeeevceeciien e, 17
3.2.28. Rule3@501: Name DLL assemblies after their containing NAMESPAce.coccveveereeriveenieenn 17
3.2.29. Rule3@502: Do not add MR building block prefixesto sourcefiles.........ocovviviiiienieeneee 17
3.2.30. Rule3@503: Use Pascal casing for naming SOUrCe filES.........ooiviiiiriienie e 17
3.2.31. Rule3@504: Namethe sourcefiletothemain class........cccccveeiiicciiieiiie e 17
3.2.32. Rule3@505: Only usethet hi s. construction to avoid aname clash...........ccccceevceeeiveesnnen. 17
4. Commentsand embedded documentation............cccooceriieeeriee e 18
4.1. L@ = YT 18
4.2. Rules and RECOMMENUELIONS...........coiuiiiiiiieeitie et 18
42.1. Rule4@101: Eachfileshall contain aheader BIOCK.eevvviiiiiiiiiiiieie e, 18
4.2.2. Ruled4@103: Use/ | fOr COMMENES. ..cooiiiiiiiiieeieeee ettt e e e e e e e e s aarrae e 18
4.2.3. Rule4@105: All comments shall bewritten in US ENGliSh.ccoviiiiiiiiiiiieec e 18
4.24. Rule4@106: Use XML tags for documenting types and MembErS.ccevveereeriieeieeneennenns 18
4.25. Rec. 4@110: Use#r egi on to group non-public Members.cocceeveeiieniienee s 19
5. ODJECE lIFECYCI@ ..ot e e ennee e 20
5.1. L@ = YT S 20
5.2. RuleS and reCOMMENGEALIONScveeieeiie ittt sbe e s nnneenneas 20
5.2.1. Rec. 5@101: Declare and initialize variables close to wherethey are used..........cccccccevvvveeeneen. 20
5.2.2. Rec. 5@102: If possible, initialize variables at the point of declaration...........cccccceeveevevveeenneen. 20
5.2.3. Rule5@105: Useaconst fidd to define constant VAIUES.cceeeeeeeeeiieeieieiee e 20
524. Rec. 5@106: Use a public static read-only field to define predefined object instances. 20
525. Rec. 5@107: Set areferencefiddtonul | totel the GC that the object is no longer needed. ... 21
52.6. Rule5@108: Do not ‘shadow’ aname in an OULEN SCOPE.......cueerurerrerrieerieesneenieesieeseesseesseenans 21
52.7. Rec. 5@111: Avoid implementing & dESITUCLON.cooveiieinieenie et 21
528. Rule5@112: If adestructor is needed, also use GC. Suppr essFi nal i ze. ..o 21
529. Rule5@113: Implement | Di sposabl e if aclass uses unmanaged or expensive resources.... 23
5.2.10. Rule5@114: Do not access any reference type members in the destructor............ccooceeieenienne. 24
5.211. Rule5@116: Always document when a member returns a copy of areferencetypeor array..... 24
G o a1 4 e I o SRS 25
6.1. L@ = YT 25
6.2. Rules and RECOMMENUBLIONS...........coitieiiiiieiiie ettt 25
6.21. Rule6@101: Do not change aloop variableinsideaf or 100p bIOCK..........ccovvieiiiiiiiiiieiene 25
6.2.2. Rec. 6@102: Update loop variables close to where the loop condition is specified. 25
6.2.3. Rule6@103: All flow control primitives (i f, el se,whi | e, for, do, sw t ch) shall be
followed by a block, even if it IS EMPLY.oiiiiiee e 25
6.2.4. Rule6@105: All swi t ch statements shall haveadef aul t labd asthelast case labd...... 25
6.25. Rule6@106: Anel se sub-statement of ani f statement shall not beani f statement without
o oY Y o7 | AT SPRTUPPTPRRPRN 25
6.2.6. Rec. 6@109: Avoid multiple or conditional r et ur n stalements.ccceevveevceeeccee e, 26
6.2.7. Rec. 6@112: Do not make explicit comparisonstot rue or f al Se......cccocvvvieiiiccnieeseee 26
6.2.8. Rule6@115: Do not access a modified object more than once in an expression.co..e..... 26
6.2.9. Rec. 6@118: Do not use selection statements (i f, swi t ch) instead of a simple assignment or
1T (= T2 o S 26
7. Object oriented programmingccccoceeeeiiieeeeiieeeesiee e ssee e e esrre e ssre e e eneee e 28
7.1. L@ = YT 28
7.2. Rules and RECOMMENUBLIONS...........coitieiiiiieiiie ettt 28
7.21. Rule7@101: Declare al fidds (data members) pri Vat €......ccccovceeveeneeniensieesee e 28
7.2.2. Rec. 7@102: Provide adefault pr i vat e constructor if thereareonly st at i ¢ methods and
PrOPEITIES ON B CIBSS. ... eeiueietie ittt sttt ettt s et e b e s an e et e e beenaeeenneenneennes 29
7.2.3. Rec. 7@105: Explicitly definea pr ot ect ed constructor onanabst r act baseclass......... 29

I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 5 of 48

For External Use 2005-05-19
7.24. Rec. 7@201: Sdection statements (i f -el se and swi t ch) should be used when the control
flow depends on an object’ s value; dynamic binding should be used when the contraol flow
depends 0N the ODJECE STYPE.couvieiieiie ettt s nane e 29
7.25. Rule7@301: All variants of an overloaded method shall be used for the same purpose and have
8 L1 07 7= 1Y o 29
7.2.6. Rec. 7@303: If you must provide the ability to override a method, make only the most complete
overload virtual and define the other operations in termMS Of itcocveviiiieiiiene e 29
7.2.7. Rec. 7@401: Specify methods using preconditions, postconditions, exceptions; specify classes
0 L 0To] V7= =g LTSRS PRSP 30
7.2.8. Rec. 7@402: Use C# to describe preconditions, postconditions, exceptions, and class invariants.30
7.29. Rule7@403: It shall be possible to use a reference to an object of a derived class wherever a
reference to that object’s base class ObJECt ISUSEd.c.eeveiriiiiiiiiieee e 31
7.2.10. Rec. 7@501: Do not overload any ‘modifying’ operatorsonacl ass type.ccccvceeveeveene 31
7.2.11. Rule 7@502: Do not modify the value of any of the operands in the implementation of an
(olV(= gl072To (=6 Koo /< = (o U TP RR PR TUPPTPROPRN 31
7.2.12. Rec. 7@503: If you implement one of oper at or ==() , the EqQual s method or
Get HashCode() , implement all three.ooei e 31
7.2.13. Rec. 7@504: Useast r uct when value semanticS are deSired.uveevveeeviviivveeeieeeee e, 31
7.2.14. Rule 7@601: Allow propertiesto beset inany Order.ccoceereeieeeriesee e 32
7.2.15. Rec. 7@602: Use a property rather than a method when the member is alogical data member.. 32
7.2.16. Rec. 7@603: Use a method rather than a property when thisis more appropriate. 32
7.2.17. Rule7@604: Do not create a constructor that does not yield a fully initialized object. 32
7.2.18. Rule 7@608: Always check theresult of anas OPEration.ccocveereereerienieesee e 32
7.2.19. Rec. 7@610: Use explicit interface implementation only to prevent name-clashing or to support
(0] 11Tl N1 1= g = o= 32
S T o= o 1 0] PR 34
8.1 L@ = YT S 34
8.2. Rules and RECOMMENUALIONS..........coiiiiiiiee et e et e e snre e e snreennees 34
8.2.1. Rule8@101: Only throw exceptions in exceptional SItUALIONS.ccoeereereerieenee e 34
8.2.2. Rule 8@102: Do not throw exceptions from inside destructors.........cccovceverceecceeeccee e, 34
8.23. Rec. 8@103: Only re-throw exceptions when you want to specialize the exception. 34
8.24. Rule8@104: List the explicit exceptions a method or property can throw.ccccoeceeviveenieenne 34
8.25. Rule8@105: Alwayslog that an exception iSthrown.cceviiiieiiiienie e 35
8.2.6. Rec. 8@106: Allow callers to prevent exceptions by providing a method or property that returns
TNE ODJECT S SLALE. ...ttt s neenne e naneen 35
8.2.7. Rec. 8@107: Use standard EXCEPLIONS.eeiueiriieiieesiiesieeiee st ne e sse e 35
8.28. Rec. 8@108: Throw informational EXCEPLIONS.cceerreriiriiieiie et 35
8.29. Rule8@109: Throw the most specific exception POSSIDIE.cccovvviiieiiiiiieiee e 35
8.2.10. Rule8@110: Only catch the exceptions explicitly mentioned in the documentation................... 35
8.211. Rule8@201: Derive custom exceptions from Appl i cati onExcepti on. ...cccccevvveienne 36
8.2.12. Rec. 8@202: Provide common constructors for custom exceptions.cccccceeveeeevieeesveesnnen. 36
8.2.13. Rule8@203: Avoid side-effects when throwing recoverable exceptions.ccccvvceeriieenieene 36
8.2.14. Rule8@204: Do not throw an exception from inside an exception constructor.cceeee.e... 36
9. DelegateS and EVENLS..........ccoiiiie i eree e e e eaaea e 37
9.1 L@ = YT 37
9.2. Rules and RECOMMENUALIONS..........ciiiiii it e e ee e et e e snte e e snreesnees 37
9.21. Rule9@101: Do not make assumptions on the object’s state after raising an event................... 37
9.2.2. Rule 9@102: Always document from which thread an event handler iscalled........................... 37
9.23. Rec. 9@103: Raise events through a protected virtual method............cccooeereiiienicneceeeee 37
9.24. Rule9@104: Use the sender/arguments signature for event handlers...........cccceveveevceeeciee e, 38
9.25. Rec. 9@105: Implement add/remove accessors if the number of handlers for an event must be
17001 1= o ST RPR RN 38

I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 6 of 48

For External Use 2005-05-19
9.26. Rec. 9@106: Consider providing property-changed eVENES.cocvereeieerieennieesee e 38
9.2.7. Rec. 9@107: Consider ani nt er f ace instead of adel egat €.ccoceeveevceee e e, 39
10. VarioUS Jala LYPES....ccciiieeeeiiiieeeieie e sttee e stee e e st e e e st e e e saee e e ssaeeesseeeessaeeesseeeeas 40
10.1. L@ = YT 40
10.2. Rules and RECOMMENUALIONS..........coiiiiiiiiee et ree e e et e e sae e e snreeenneas 40
10.2.1. Rec. 10@201: Use an enumto strongly type parameters, properties, and return types. 40
10.2.2. Rule10@202: Use the default type | nt 32 as the underlying type of an enumunless thereisa
FEASON TO USE T NT B4, .o s e s st e e s nabe e e e s snae e e s snaes 40
10.2.3. Rec. 10@203: Usethe[FI ags] attribute on an enumif a bitwise operation is to be performed
ON thE NUMENTC VBIUES.oeieiee ettt ettt et e et e e st e e sate e e nnaeesnneeesnreeennneeennes 40
10.2.4. Rec. 10@301: DO NOt USE “MAgiC NUIMDEISccueiiiiiiiiesiie st etee et 41
10.2.5. Rule10@401: Floating point values shall not be compared using either the == or ! = operators.41
10.2.6. Rec. 10@403: Do not cast types where aloss of precision is possible. ... 41
10.2.7. Rule 10@404: Only implement casts that operate on the complete object.cccvevveriieeiieenne 42
10.2.8. Rule10@405: Do not generate a semantically different valuewithacast.........ccccccoveveeeeens 42
R 0 o |1 0o [Y] RS PRSRTII 43
11.1. L@ < YT 43
11.2. Rules and RECOMMENUALIONS..........coiiiieiiee ettt e e ee e e e e snae e e snreeenees 43
11.2.1. Rule11@101: Do not mix coding styles within a group of closdly rdated classes or within a
10707 L1 S 43
11.2.2. Rec.11@403: Thepubl i c, pr ot ect ed, andpri vat e sectionsof acl ass or st ruct
shall bedeclared iNthat Order.ooocuei e 43
11.2.3. Rule11@407: Write unary, increment, decrement, function call, subscript, and access operators
together With thelr OPEraNdS.ooviiiiiii e 43
11.2.4. Rule 11@409: Use spacesinstead Of tals.cccviviiiiiiiiiieceesee e 44
11.25. Rec. 11@411: Do not create overly 10Ng SOUICE lINES.........covviiieieieiiieeieeree e 44
Appendix A. EXaMPIE COUEcooiriiee et e e 45
Al FHIETAYOUL ... ettt e b et ebe e naeenaneenneas 45
AppendiXx B. 1NAEX OF tEIMISuiiiiiie e 48

I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 7 of 48
For External Use 2005-05-19

1. Introduction

1.1. Objective

This document requires or recommends certain practices for developing programs in the C# language. The
objective of this coding standard is to have a positive effect on

& esAvoidance of errorg/bugs, especially the hard-to-find ones.

& esMaintainability, by promoting some proven design principles.

& esMaintainability, by requiring or recommending a certain unity of style.
& =Performance, by dissuading wasteful practices.

1.2. Scope

This standard pertains to the use of the C# language. With very few exceptions, it does not discuss the use of the
.NET class libraries. Certain items that deserve attention have been identified, but have not been included in this
document because treatment in separate documents appears more appropriate. Theseinclude items such as:

& =sUnmanaged code

£525COM

& esMulti-threading

& &sLocalization (languages, Unicode).

& zRemoting

=\WinForms

&5 esSecurity

This standard does not include rules or recommendations on how to layout brackets, braces, and code in general.

1.3. Rationale

Reasons to have a coding standard and to comply with it are not given here, except the objectives listed in section
1.1. Inthis section the origins of the rules and recommendations are given and some explanation why these were
chosen.

1.3.1. Sources of inspiration

Many of the rules and recommendations were taken from the MSDN C# Usage Guiddines ([3]). The naming
guiddines in that document are identical to those found in Appendix C of the ECMA C# Language Specification
([2]). Naming standards and other styleissues are more or less arbitrary, so it seems prudent to follow an existing
convention. The naming standard in this document differs from that in the given references only in some miniscule
details that will hardly ever occur in practice.

Many other recommendations and a few design patterns were also taken from [3]. The problem with that
document is that the guidelines, although quite good, are mostly unsuited for automatic verification.

Some general good practices, most of them concerning Object-Oriented programming, were copied from the
PMS-MR C++ Coding Standard ([1]). Some of these are, unsurprisingly, also listed in [3].

Some coding guiddines for Java, a programming language rather similar to C#, have been studied for additional
recommendations, but all were too vague and/or too specific to Java to have any impact. Any useful guideline was
aready present in [1] and/or [3].

The numbering scheme and some of the structure have been copied from [1].

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 8 of 48
For External Use 2005-05-19

1.3.2. Contrast with C++

A considerable part of a coding standard for C or C++ could be condensed into a single rule, avoid undefined
behavior, and maybe shun implementation defined behavior. Officially C# does not exhibit any of these, barring
afew minor, well-defined exceptions. Maost examples of undefined behavior in C++ will cause an exception to be
thrown in C#. Although this is an improvement on the “anything might happen” of C++, it is highly undesirable
for post-release software.

1.4. Applicability

This coding standard applies to all C# codethat is part of PM S software products or directly supportive to these
products. Third party softwareis constrained by this standard if this software is developed specifically for PMS.

1.5. History

Date Level Editor Description

2002-11-14 0.1 Vic Hartog First Draft.

2002-11-xx 0.2 Vic Hartog First Draft, continued.

2003-01-06 0.3 Vic Hartog en Dennis Doomen First Draft, merged.

2003-01-13 0.4 Vic Hartog en Dennis Doomen minor corrections, remove duplicates.

2003-01-15 0.5 Vic Hartog en Dennis Doomen final corrections resulting in the final draft, ready for
review.

2003-02-04 0.6 Dennis Doomen Rework using comments from formal reviews.

2003-02-18 0.7 Dennis Doomen Rework of chapters written by Vic.

2003-03-05 0.8 Dennis Doomen Changed # in numbersinto & . Updated verification level
with feedback Paul Jansen. Modified 3@305, 3@501,
6@102, 11@403.

2003-03-10 1.0 Dennis Doomen Final version for authorization.

2004-11-04 1.1 Vic Hartog Some PR’'sand CR’s. Most important changes are:
weakened 11@411; weakened 3@505; rewrote 5@102;
deleted 10@402; deleted 4@104; deleted 5@103;
weakened 7@604.

2005-03-14 1.2 Vic Hartog In 3@102 changed casing of constants and readonlies

from camd to Pascal. Weakened 4@106. 7@101 also
exception for const. Intro 5@108. Updated 7@503.

2005-05-19 1.3 Vic Hartog Incorporated reviewer’ s comments. Changed header page
to reflect the fact that this is now PM S-wide standard.
Minor clarifications and some typo’s.

1.6. Status of document

Thisis the authorized version of a coding standard for a language in which no one has much experience. Hardly
any prior art is available to serve as a solid base, except [3].

Items that are probably not treated well, if at all, because of the lack of experience, are

s esattributes;

& esgenerated code, although we may assume that the ‘wizards' in Studio follow the MSDN guiddines;
& esunsafe code;

&5 #Preprocessor usage.

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 9 of 48
For External Use 2005-05-19

1.7. Notational conventions

1.7.1. Rule

A rule should be broken only for compelling reasons where no reasonable alternative can be found. The author of
the violating code shall consult with at least one knowledgeable colleague and a senior designer to review said
necessity. A comment in the code explaining the reason for the violation is mandatory.

1.7.2. Recommendation

A recommendation should be followed unless there is good reason to do otherwise. Consultation with a
knowledgeabl e colleague about the validity of the reason is necessary. A comment in the code is recommended.

1.7.3. Checkable

Rules and recommendations in this coding standard are marked checkable if they are checked by TIOBE's C#
code checker ClockSharp (see www.clocksharp.com for more details).

1.7.4. Tabular overview

Each chapter starts with a table containing an overview of the rules and recommendations presented in the
chapter. The table has the following form:

SOURCE = CHECK RULE OR RECOMMENDATION
From ? - Number and text of the rule or recommendation

The columns are:

Source indicates the original document from which the text was copied or derived. In most cases this will be C++
for [1] or MSDN for [3].

The entry = in the 2™ column indicates if the text isidentical to the one in the source, with ? indicating a small
change.

The 3" column indicates if it is deemed possible to perform an automatic verification of compliance, where the
entry ‘- meansimpossible, ‘+' possible and ‘?" incompletely possible.

1.7.5. Examples

Please note that the source code formatting in some examples has been chosen for compactness rather than for
demonstrating good practice. The use of a certain compact style in some of the examples is considered suitable for
tiny code fragments, but should not be emulated in “real” code.

1.8. Definition of terms and abbreviations

Term Description

GAC Global Assembly Cache

GC Garbage Collector

CLR Common Language Runtime

1.9. References

Ref. doc. Number Author Title
[1] XJS-154-1215 Bart van Tongeren PMS-MR C++ Coding Standard
[2] ECMA-334 TC39TG2 C# Language Specification, ed. Dec 2001*

! An SO standard is expected by the end of 2003.

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 10 of 48
For External Use 2005-05-19

Ref. doc. Number Author

Title

[3] msdn, unnumbered

[4] 9 GPLAN Notices, Barbara Liskov
23,5 (May, 1988).

[5] PrenticeHall, 1988 Bertrand Meyer

Design Guiddines for [.NET] Class Library Deveopers, as
found on the net®

Data Abstraction and Hierarchy

Object Oriented Software Construction

2 under http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconnetframeworkdesignguiddines.asp

I RAD

Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 11 of 48
For External Use 2005-05-19

2. General rules

2.1. Overview

SOURCE = CHECK RULE OR RECOMMENDATION

C++ ? |- Rule 2@102: Every time a recommendation is not followed, this must
have a good reason.
- Rule 2@105: Do not mix code from different providers in one file

2.2. Rules and Recommendations

2.2.1. Rule2@102: Every time a recommendation is not followed, this must have a
good reason.

Good reasons do not include personal preferences of style.

2.2.2. Rule2@105: Do not mix code from different providers in one file

In general, third party code will not comply with the coding standard, so do not put such code in the samefile as
code written by MR or MIT. Also, do not mix code from MR with code from MIT. This coding standard does not
specify layout rules, so code snippets from both providers may look dlightly different.

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/1.3

Coding Standard: C#
For External Use

Page 12 of 48
2005-05-19

3. Naming conventions

3.1. Overview

SOURCE = CHECK RULE OR RECOMMENDATION

msdn = |- Rec. 3@101: Use US-English for naming identifiers.

msdn = |+ Rule 3@102: Use Pascal and Camel casing for naming identifiers.

msdn = |- Rule 3@103: Do not use Hungarian notation or add any other type
identification to identifiers.

msdn ? |+ Rule 3@104: Do not prefix member fields.

msdn = |+ Rule 3@105: Do not use casing to differentiate identifiers.

msdn = |- Rec. 3@106: Use abbreviations with care.

msdn ? |+ Rule 3@107: Do not use an underscore in identifiers.

msdn = Rec. 3@108: Name an identifier according to its meaning and not its
type.
+ Rule 3@109: Name namespaces according to a well-defined pattern.
msdn = |+ Rule 3@110: Do not add a suffixto a cl ass or st ruct name.
msdn = |- Rec. 3@111: Use a noun or a houn phrase to name a cl ass or
struct.

msdn = |+ Rule 3@113: Prefix interfaces with the letter | .

msdn = |- Rec. 3@120: Use similar names for the default implementation of an
interface.

msdn = |+ Rule 3@122: Suffix names of attributes with At t ri but e.

msdn = |+ Rule 3@201: Do not add an Enumsuffix to an enumeration type.

msdn = |- Rule 3@202: Use singular names for enumeration types.

msdn = |- Rule 3@203: Use a plural name for enumerations representing
bitfields.

msdn ? |+ Rec. 3@204: Do not use letters that can be mistaken for digits, and
vice versa.

msdn = |- Rule 3@301: Add Event Handl er to delegates related to events.

- Rule 3@302: Add Cal | back to delegates related to callback

methods.

msdn = |+ Rule 3@303: Do not add a Cal | back or similar suffix to callback
methods.

msdn = |- Rec. 3@304: Use a verb (gerund) for naming an event.

msdn = |+ Rule 3@305: Do not add an Event suffix (or any other type-related
suffix) to the name of an event.

msdn = |+ Rule 3@306: Use an —i ng and —ed form to express pre-events and
post-events.

msdn ? - Rule 3@307: Prefix an event handler with On.

msdn = |- Rule 3@401: Suffix exception classes with Except i on.

- Rule 3@402: Do not add code-archive related prefixes to identifiers.

- Rule 3@501: Name DLL assemblies after their containing

namespace.

- Rule 3@502: Do not add MR building block prefixes to source files.

+ Rule 3@503: Use Pascal casing for naming source files.

+ Rule 3@504: Name the source file to the main class

+ Rule 3@505: Only use the t hi s. construction

I RAD

Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 13 of 48
For External Use 2005-05-19

3.2. Rules and Recommendations
3.2.1. Rec.3@101: Use US-English for naming identifiers.

3.2.2. Rule3@102: Use Pascal and Camel casing for naming identifiers.
&5 In Pascal casing thefirst letter of each word in an identifier is capitalized. For example, Back Col or.

5 In Camd casing only the first letter of the second, third, etc. word in a nameis capitalized; for example,
backCol or.

The table below provides the casing for the most common types.

IDENTIFIER CASE EXAMPLE]
Class Pascal AppDomai n

Enum type Pascal ErrorLevel
Enum values Pascal Fatal Error
Event Pascal Val ueChange
Exception class Pascal WebExcepti on
Field camel [istltem

Const Field Pascal Maxi mum t ens
Read-only Static Field |Pascal RedVal ue
Interface Pascal I Di sposabl e
Method Pascal ToString
Namespace Pascal System Dr awi ng
Parameter camel t ypeNanme
Property Pascal BackCol or

Two-letter abbreviations in Pascal casing have both letters capitalized. In Came casing this also holds true,
except at the start of an identifier where both letters are written in lower case. With respect to capitalization in
Pascal and Camd casing, abbreviations with more than two |etters are treated as ordinary words.

Some examples:

CAMEL CASING PASCAL CASING

newlmage Newlmage
uiEntry UIEntry
pmsMR PmsMR

3.2.3. Rule 3@103: Do not use Hungarian notation or add any other type
identification to identifiers.

Use of Hungarian notation is deprecated by companies like Microsoft because it introduces a programming
language-dependency and complicates maintenance activities.

Exceptions:

Rule 3@104, Rule 3@113, Rule 3@122, Rule 3@301, Rule 3@302, Rule 3@307, Rule 3@401.

3.2.4. Rule3@104: Do not prefix member fields.
In general, a method in which it is difficult to distinguish local variables from member fieds is too big.

3.2.5. Rule 3@105: Do not use casing to differentiate identifiers.

Some programming languages (e.g. VB.NET) do not support distinguishing identifiers by case, so do not define a
type called A and a in the same context.

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 14 of 48

For External Use 2005-05-19

This rule applies to namespaces, properties, methods, method parameters, and types. Please note that it is allowed
to have identifiers that differ only in casein distinct categories, e.g. a property Back Col or that wraps the fied
backCol or.

3.2.6. Rec. 3@106: Use abbreviations with care.

Do not contract words in identifiers, but do use well-known abbreviations. For example, do not use Get W n
instead of Get W ndow, but do use a well-known abbreviation such as Ul instead of User | nt er f ace.

3.2.7. Rule 3@107: Do not use an underscore in identifiers.

3.2.8. Rec.3@108: Name an identifier according to its meaning and not its type.
Avoid using language specific terminology in names of identifiers. As an example, suppose you have a number of
overloaded methods to write data types into a stream. Do not use definitions like:

void Wite(doubl e doubl eval ue);

void Wite(long | ongVal ue);
Instead, use:

void Wite(double val ue);
void Wite(long val ue);

If it is absolutely required to have a uniquely named method for every data type, use Universal Type Namesin the
method names. The table below provides the mapping from C# types to Universal types.

C# TYPE NAME UNIVERSAL TYPE

NAME
sbyte SByt e
byte Byt e
short Int1l6
ushort U nt 16
int | nt 32
uint Ul nt 32
|0ng | nt 64
u|0ng Ul nt 64
float Single
double Doubl e
bool Bool ean
char Char
string String
object Ooj ect

Based on the example above, the corresponding reading methods may look like this:

doubl e ReadDoubl e();
| ong Readl nt 64();

3.2.9. Rule 3@109: Name namespaces according to a well-defined pattern.
Namespaces should be written in Pascal casing and named according to the following pattern:
<company>. <t echnol ogy>. <top-| evel conponent >. <bottoml evel conponent >

MR-specific:
Within MR, the following pattern must be used.
Phili ps. PmeMR. <t op-| evel buil ding bl ock>. <buil di ng bl ock>

I RAD

Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 15 of 48
For External Use 2005-05-19

For example, classes from the I nterProcessCommunication building block (BB) under
\ pl at f or M basi csw\ basi car chi ve must be part of the following namespace:

Phili ps. PnmeMR. Pl at f orm | nt er ProcessConmuni cat i on

MIT-specific:
Philips.PmsMt. <top-|evel conponent>.<bottomlevel conmponent>

3.2.10. Rule 3@110: Do not add a suffix to acl ass or struct name.
Do not add suffixeslike St r uct or Cl ass tothenameof acl ass or struct.

Exceptions:
Rule 3@122 and Rule 3@401.

3.2.11. Rec.3@111: Use anoun or anoun phrase to name a cl ass or struct.

Also, if the class involved is a derived class, it isa good practice to use a compound name. For example, if you
have a class named But t on, deriving from this class may result in a class named Bevel edBut t on.

3.2.12. Rule 3@113: Prefix interfaces with the letter | .

All interfaces should be prefixed with the letter | . Useanoun (e.g. | Conponent), noun phrase (e.g.
| Cust omAt t ri but eProvi der), or an adjective (e.g. | Per si st abl €) to nameaninterface.

3.2.13. Rec. 3@120: Use similar names for the default implementation of an
interface.

If you provide a default implementation for a particular interface, use a similar name for the implementing class.
Notice that this only applies to classes that only implement that interface.

For example, a class implementing the | Conponent interface could be called Conponent or
Def aul t Conponent.

3.2.14. Rule 3@122: Suffix names of attributes with Attri bute.
Although thisis not required by the C# compiler, this convention is followed by al built-in attributes.

3.2.15. Rule 3@201: Do not add an Enumsuffix to an enumeration type.
See also Rule 3@103.

3.2.16. Rule 3@202: Use singular names for enumeration types.

For example, do not name an enumeration type Pr ot ocol s but nameit Pr ot ocol instead. Consider the
following example in which only one option is allowed.
publ i ¢ enum Pr ot ocol

{
Tcp,
Udp,
Htp,
Ftp
}

3.2.17. Rule 3@203: Use a plural name for enumerations representing bitfields.

Use a plural name for such enumeration types. The following code snippet is a good example of an enumeration
that allows combining multiple options.

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 16 of 48
For External Use 2005-05-19

[FI ags]
publ i ¢ Enum Sear chOpti ons
{
Casel nsensiti ve = 0x01,
Whol eWor donly = 0x02,
Al | Docunents = 0x04,
Backwar ds = 0x08,
Al |l owWN | dcards = 0x10

}
3.2.18. Rec. 3@204: Do not use letters that can be mistaken for digits, and vice
versa.
To create obfuscated code, use very short, meaningless names formed from the letters O, 0, | , | and the digits 0
and 1. Anyonereading code like
bool b001 = (lo ==10) ? (11 == 11) : (1A = 101);

will marve at your creativity.

3.2.19. Rule 3@301: Add Event Handl er to delegates related to events.

Ddegates that are used to define an event handler for an event must be suffixed with Event Handl er. For
example, the following declaration is correct for a Cl ose event.

publ i c del egat e C oseEvent Handl er (obj ect sender, Event Args argunents)

3.2.20. Rule 3@302: Add Cal | back to delegates related to callback methods.

Ddegates that are used to pass a reference to a callback method (so not an event) must be suffixed with
Cal | back. For example:
public del egate Asyncl OFi ni shedCal | back(IpcClient client, string nmessage);

3.2.21. Rule 3@303: Do not add a Cal | back or similar suffix to callback methods.

Do not add suffixes like Cal | back or CB to indicate that methods are going to be called through a callback
delegate. Y ou cannot make assumptions on whether methods will be called through a delegate or not. An end-user
may decide to use Asynchronous Delegate | nvocation to execute the method.

3.2.22. Rec. 3@304: Use averb (gerund) for naming an event.

Good examples of eventsareCl osi ng, M ni m zi ng, and Ar ri vi ng. For example, the declaration for the
d osi ng event may look like this:

public event C osi ngEvent Handl er C osi ng;

3.2.23. Rule 3@305: Do not add an Event suffix (or any other type-related suffix) to
the name of an event.

See also Rule 3@103.

3.2.24. Rule 3@306: Use an —i ng and —ed form to express pre-events and post-
events.
Do not use a pattern like Begi nXxx and EndXxx. |f you want to provide distinct events for expressing a point

of time before and a point of time after a certain occurrence such as a validation event, do not use a pattern like
Bef oreVal i dati onand Af t er Val i dat i on. Instead, useaVal i dati ng andVal i dat ed pattern.

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 17 of 48
For External Use 2005-05-19

3.2.25. Rule 3@307: Prefix an event handler with On.

It is good practice to prefix the method that is registered as an event handler with On. For example, a method that
handles the Cl osi ng event should be named OnCl osi ng().

Exception:
In some situations, you might be faced with multiple classes exposing the same event name. To allow separate
event handlers use a moreintuitive name for the event handler, as long as it is prefixed with On.

3.2.26. Rule 3@401: Suffix exception classes with Excepti on.
For example: | pcExcepti on.

3.2.27. Rule 3@402: Do not add code-archive related prefixes to identifiers.

Do not add MR building block related prefixes, or prefixes that have a relation with the location within the source
archive.

3.2.28. Rule 3@501: Name DLL assemblies after their containing namespace.

To alow storing assemblies in the GAC, their names must be unique. Therefore, use the namespace name as a
prefix of the name of the assembly. As an example, consider a group of classes organized under the namespace
Philips. PneMR. Pl at f orm OSI nt er f ace Inthat case, the assembly generated from those classes will
becaled Phi | i ps. PmsMR. Pl at f orm OSI nt er f ace. dl I.

If multiple assemblies are built from the same namespace, it is allowed to append a unique postfix to the
namespace name.

3.2.29. Rule 3@502: Do not add MR building block prefixes to source files.

None of the source files from a building block will be visible outside the building block, so thereis no use for
building block prefixes. However, it is allowed to have some consistent naming scheme for related source files
(e.g. belonging to a component or class hierarchy).

3.2.30. Rule 3@503: Use Pascal casing for naming source files.
Do not use the underscore character and do not use casing to differentiate names of files.

3.2.31. Rule 3@504: Name the source file to the main class

In addition, do not put more than one major class plus its auxiliary classes (such as Event Ar gs-derived
classes) in one sourcefile.

3.2.32. Rule 3@505: Only use thethis. construction to avoid a name clash

Donot usethet hi s. construction to dereference members. Theuseof t hi s isonly allowed as areferenceto
the current class instance or to prevent name clashing between method parameters and class fidds.

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 18 of 48
For External Use 2005-05-19

4. Comments and embedded documentation

4.1. Overview

SOURCE = CHECK RULE OR RECOMMENDATION

c++ = |+ Rule 4@101: Each file shall contain a header block
c++ = |+ Rule 4@103: Use// for comments.
c++ = |- Rule 4@105: All comments shall be written in US English.
msdn = |+ Rule 4@106: Use XML tags for documenting types and members.
- Exception:
Private and nested classes do not have to be documented in this
manner.
Rec. 4@110: Use #r egi on to group non-public members.

4.2. Rules and Recommendations

4.2.1. Rule 4@101: Each file shall contain a header block.

The header block must consist of a#r egi on block containing the following copyright statement and the name
of thefile.

#regi on Copyright Koninklijke Philips Electronics N.V. 203

/1

/1 Al'l rights are reserved. Reproduction or transmi ssion in whole or in part, in
/1l any formor by any neans, electronic, mechanical or otherw se, is prohibited
/1l without the prior witten consent of the copyright owner.

/1

/1 Filenanme: PatientAdmi nistration.cs

/1

#e

ndr egi on

4.2.2. Rule 4@103: Use// for comments.
See A.1for layout examples.

4.2.3. Rule4@105: All comments shall be written in US English.

4.2.4. Rule4@106: Use XML tags for documenting types and members.

All public and protected types, methods, fidds, events, delegates, etc. shall be documented using XML tags.
Using these tags will allow IntelliSense to provide useful details while using the types. Also, automatic
documentation generation tooling relies on these tags. See A.1 for examples.

Section tags define the different sections within the type documentation.

SECTION TAGS DESCRIPTION LOCATION
<summary> Short description type or member
<remar ks> Describes preconditions and other additional information. type or member
<par anmp Describes the parameters of a method method
<returns> Describes the return value of a method method
<exception> Lists the exceptions that a method or property can throw method, even or
property
<val ue> Describes the type of the data a property accepts and/or returns | property
<exanpl e> Contains examples (code or text) related to a member or a type |type or member
<seeal so> Adds an entry to the See Also section type or member
<over | oads> Provides a summary for multiple overloads of a method first method in a

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 19 of 48
For External Use 2005-05-19

SECTION TAGS DESCRIPTION LOCATION
overload list.

Inline tags can be used within the section tags.

INLINE TAGS DESCRIPTION ‘
<see> Creates a hyperlink to another member or type
<par anr ef > Creates a checked reference to a parameter

Markup tags are used to apply special formatting to a part of a section.
MARKUP TAGS DESCRIPTION

<code> Changes the indentation policy for code examples

<c> Changes the font to a fixed-wide font (often used with the <code> tag)
<para> Creates a new paragraph

<list> Creates a bulleted list, numbered list, or a table.

 Bold typeface

<i> Italics typeface

Exception:

In an inheritance hierarchy, do not repeat the documentation but use the <see> tag to refer to the base class or
interface member.

Exception:
Private and nested classes do not have to be documented in this manner.

4.25. Rec.4@110: Use #r egi on to group non-public members.

If a class contains a large number of members, attributes, and/or properties, put all non-public membersin a
region. Preferably, use separate regions to split-up the private, protected, and internal members, and aregion to
hide all fidds. It is also allowed to usethe#r egi on construct for separating the smaller auxiliary classes from
the main class. See dso Rule 2@105.

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 20 of 48
For External Use 2005-05-19

5. Object lifecycle

5.1. Overview

SOURCE = CHECK RULE OR RECOMMENDATION

c++ = |- Rec. 5@101: Declare and initialize variables close to where they are
used.

ct++ = |- Rec. 5@102: If possible, initialize variables at the point of declaration.

msdn = |- Rule 5@105: Use a const field to define constant values.

msdn = |- Rec. 5@106: Use a public static read-only field to define predefined
object instances.

msdn = |- Rec. 5@107: Set a reference field to nul | to tell the GC that the
object is no longer needed.

+ Rule 5@108: Do not ‘shadow’ a nhame in an outer scope

msdn = |+ An exception is made for the case where a parameter of a method has
the same name as a field, usually causing a
construction liket hi s. foo = foo.

Rec. 5@111: Avoid implementing a destructor.

msdn ? |+ Rule 5@112: If a destructor is needed, also use
GC. SuppressFinali ze.

msdn = |- Rule 5@113: Implement | Di sposabl e if a class uses unmanaged
Or expensive resources.

msdn = |+ Rule 5@114: Do not access any reference type members in the
destructor.

- Rule 5@116: Always document when a member returns a copy of a

reference type or array

5.2. Rules and recommendations
5.2.1. Rec.5@101: Declare and initialize variables close to where they are used.

5.2.2. Rec.5@102: If possible, initialize variables at the point of declaration.

Avoid the C style where all variables have to be defined at the beginning of a block, but rather define and
initialize each variable at the point whereit is needed.

5.2.3. Rule 5@105: Use a const field to define constant values.
Making it const ensuresthat memory is allocated for that item only once.

private const int maxUsers = 100;

Exception
If the value of a constant field must be calculated at run-time (in the static constructor), useast ati ¢ read-
onl y fidd instead. See also Rec. 5@106.

5.2.4. Rec.5@106: Use a public static read-only field to define predefined object
instances.

For example, consider a Col or class/struct that expresses a certain color internally as red, green, and blue

components, and this class has a constructor taking a numeric value, then this class may expose several

predefined colors like this.

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 21 of 48
For External Use 2005-05-19

public struct Col or

{
public static readonly Col or Red = new Col or (OXxFF0000) ;

public static readonly Col or Bl ack new Col or (0x000000) ;
public static readonly Color Wite new Col or (OXFFFFFF) ;

public Col or(int rgbh)

/1 inplementation

5.2.5. Rec.5@107: Set areference field to nul | to tell the GC that the object is no
longer needed.

Setting referencefidlds to nul | may improve memory usage because the object involved will be unreferenced
from that point on, allowing the GC to clean-up the object much earlier. Please note that this recommendation
should not be followed for a variable that is about to go out of scope.

5.2.6. Rule 5@108: Do not ‘shadow’ a name in an outer scope.

Repeating a name that already occurs in an outer scope is seldom intended and may be surprising in maintenance,
although the behaviour is well-defined.
int foo = sonet hing;

i f (what ever)

double foo = 12.34; // do not re-use this nane

}

An exception is made for the case where a parameter of a method has the same name as afidd, usually causing a
construction liket hi s. foo = foo.

5.2.7. Rec.5@111: Avoid implementing a destructor.
If adestructor is required, adhereto Rule 5@112 and Rule 5@113.

The use of destructorsin C# is demoted since it introduces a severe performance penalty due to way the GC
works. It is also a bad design pattern to clean up any resources in the destructor since you cannot predict at which
time the destructor is called (in other words, it is non-deterministic).

Notice that C# destructors are not really destructors as in C++. They are just a C# compiler feature to represent
CLR Finalizers.

5.2.8. Rule5@112: If adestructor is needed, also use GC. Suppr essFi nal i ze.

If adestructor is needed to verify that a user has called certain cleanup methods suchas Cl ose() ona
| pcPeer object, call GC. Suppr essFi nal i zeintheCl ose() method. This ensures that the destructor is
ignored if the user is properly using the class. The following snippet illustrates this pattern.

public class |pcPeer
bool connected = fal se;
public void Connect ()

/1 Do some work and then change the state of this object.
connected = true;

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 22 of 48

For External Use 2005-05-19
public void C ose()
{
/1 O ose the connection, change the state, and instruct the GC
/1l not to call the destructor.
connected = fal se;
CC. Suppr essFinali ze(this);
}
~I pcPeer ()
/1 1f the destructor is called, then C ose() was not call ed.
i f (connected)
/1 Warning! User has not called Cose(). Notice that you can’t
/1 call Close() fromhere because the objects involved may
/! have al ready been garbage collected (seeRule 5@13).
}
}

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 23 of 48
For External Use 2005-05-19

5.2.9. Rule5@113: Implement | Di sposabl e if a class uses unmanaged or
expensive resources.

If a class uses unmanaged resources such as abjects returned by C/C++ DLLS, or expensive resources that must
be disposed of as soon as possible, you must implement the | Di sposabl e interface to allow class users to
explicitly release such resources.

Thefollow code snippet shows the pattern to use for such scenarios.
public class ResourceHol der : |Disposable

{
/1] <summary>
/1/1nplementation of the | D sposable interface
/1] </summary>
public void Di spose()

{
/] Call internal Dispose(bool)
Di spose(true);
/1 Prevent the destructor from being called
CC. SuppressFinalize(this);
}

/1] <summary>

/1l Central method for cleaning up resources
/1] </summary>

protected virtual void Di spose€(bool explicit)

{
[l If explicit is true, then this nethod was called through the
/1 public Dispose()
if (explicit)
{
/'l Rel ease or cl eanup nmanaged resources
}
/1 Always rel ease or cleanup (any) unnmanaged resources
}

~Resour ceHol der ()

/1 Since other nanaged olj ects are di sposed automatically, we

/1 should not try to dispose any managed resources (seeRule 5@14).
/1 W therefore pass false to Dispose()

Di spose(fal se);

Please note that this method could have any other name, e.g. | nt er nal Di spose. It has no relation to the parameterless
Di spose() method of | Di sposabl e.

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 24 of 48
For External Use 2005-05-19

If another class derives from this class, then this class should only overridethe Di spose(bool) method of the
base class. It should not implement | Di sposabl e itsdf, nor provide a destructor. The base class's * destructor’
is automatically called.

public class DerivedResourceHol der : ResourceHol der

{
protected override void Di sposg bool explicit)
if (explicit)
/'l Rel ease or cl eanup managed resources of this derived
/1 class only.
/1 Always rel ease or cleanup (any) unmanaged resources.
/1l Call Dispose on our base cl ass.
base. Di spose(explicit);
}
}

5.2.10. Rule 5@114: Do not access any reference type members in the destructor.

When the destructor is called by the GC, it is very possible that some or al of the objects referenced by class
members are already garbage collected, so dereferencing those objects may cause exceptions to be thrown.

Only value type members can be accessed (since they live on the stack).

5.2.11. Rule 5@116: Always document when a member returns a copy of areference
type or array
By default, all members that need to return an internal object or an array of objects will return a reference to that

object or array. In some cases, it is safer to return a copy of an object or an array of objects. In such case, always
clearly document this in the specification.

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 25 of 48
For External Use 2005-05-19

6. Control flow

6.1. Overview

SOURCE = CHECK RULE OR RECOMMENDATION

C++ = |+ Rule 6@101: Do not change a loop variable inside a f or loop block.
C++ = |- Rec. 6@102: Update loop variables close to where the loop condition
is specified.

C++ = |+ Rule 6@103: All flow control primitives (i f, el se, whi | e, f or, do,
swi t ch) shall be followed by a block, even if it is
empty.

C++ = |+ Rule 6@105: All swi t ch statements shall have a def aul t label as
the last case label.

C++ = |+ Rule 6@106: An el se sub-statement of ani f statement shall not be
ani f statement without an el se part.

C++ = |+ Rec. 6@109: Avoid multiple or conditional r et ur n statements.

C++ = |+ Rec. 6@112: Do not make explicit comparisonstotrue orf al se.
C++ = |+ Rule 6@115: Do not access a modified object more than once in an
expression
C++ = |- Rec. 6@118: Do not use selection statements (i f, swi t ch) instead

of a simple assignment or initialization.

6.2. Rules and Recommendations

6.2.1. Rule 6@101: Do not change aloop variable inside af or loop block.

Updating the loop variable within the loop body is generally considered confusing, even more so if the loop
variable is modified in more than one place. Thisrule also appliesto f or each loops.

6.2.2. Rec.6@102: Update loop variables close to where the loop condition is
specified.
This makes understanding the loop much easier.

6.2.3. Rule 6@103: All flow control primitives (i f, el se,whil e, for,do,sw tch)
shall be followed by a block, even if it is empty.

Please note that this also avoids possible confusion in statements of the form:
if (bl) if (b2) Foo(); else Bar(); // which 'if’ goes with the ‘else' ?

6.2.4. Rule 6@105: All swi t ch statements shall have a def aul t label as the last
case label.

A comment such as “ho action” is recommended where thisis the explicit intention. If the default case should be
unreachable, an assertion to this effect is recommended.

If the default l1abd is always thelast one, it is easy to locate.

6.2.5. Rule 6@106: An el se sub-statement of an i f statement shall notbeani f
statement without an el se part.

The intention of this rule, which appliestoel se-i f constructs, is the same asin Rule 6@105. Consider the
following example.

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 26 of 48
For External Use 2005-05-19

voi d Foo(string answer)

{

if (“no” == answer)
Consol e. WiteLine(“You answered with No");
else if (“yes” == answer)

Consol e. WiteLine(“You answered with Yes”);

}

el se

/1 This block is required, even though you m ght not care of any other
/1 answers than “yes” and “no”.

6.2.6. Rec.6@109: Avoid multiple or conditional r et ur n statements.

One entry, one exit is a sound principle and keeps control flow simple. However, if some cases, such as when
preconditions are checked, it may be good practice to exit a method immediately when a certain precondition is
not met.

6.2.7. Rec.6@112: Do not make explicit comparisonstotrue or fal se.
It isusually bad styleto compareabool -typeexpressiontot r ue or f al se.

Example:
while (condition == false) // wong; bad style
while (condition !'=true) // also wong
while (((condition == true) == true) == true) // where do you stop?

while (condition) // K

6.2.8. Rule 6@115: Do not access a modified object more than once in an
expression.

The evaluation order of sub-expressions within an expression is defined in C#, in contrast to C or C++, but such
codeis hard to understand.

Example
v[i] = ++c; /1 right
v[i] = ++i; /1l wong: is v[i] or v[++i] being assigned to?
i =i + 1; /1 right
i = ++ o+ 1; /1 wong and useless; i += 2 would be cl earer

6.2.9. Rec.6@118: Do not use selection statements (i f, swi t ch) instead of a
simple assignment or initialization.

Express your intentions directly. For example, rather than

bool pos;
if (val > 0)
pos = true;
}
el se
{
pos = fal se;
}

or (dlightly better)
bool pos = (val > 0) ? true : fdse;

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 27 of 48

For External Use 2005-05-19
write
bool pos;
pos = (val > 0); /'l single assignnment
or even better

bool pos = (val > 0); // initialization

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/1.3

Coding Standard: C#
For External Use

Page 28 of 48
2005-05-19

7. Object oriented programming

7.1. Overview

SOURCE = CHECK RULE OR RECOMMENDATION

C++

+

Rule 7@101.:

Declare all fields (data members) pri vat e.

msdn

+

Rec. 7@102:

Provide a default pri vat e constructor if there are only
st at i ¢ methods and properties on a class.

msdn

Rec. 7@105:

Explicitly define a pr ot ect ed constructor on an
abstract base class.

C++

Rec. 7@201.:

Selection statements (if-else and swi t ch) should be
used when the control flow depends on an object’s
value; dynamic binding should be used when the
control flow depends on the object’s type.

Both

Rule 7@301:

All variants of an overloaded method shall be used for
the same purpose and have similar behavior.

msdn

Rec. 7@303:

If you must provide the ability to override a method,
make only the most complete overload virtual and
define the other operations in terms of it.

C++

Rec. 7@401.:

Specify methods using preconditions, postconditions,
exceptions; specify classes using invariants.

C++

Rec. 7@402:

Use C# to describe preconditions, postconditions,
exceptions, and class invariants.

C++

Rule 7@403:

It shall be possible to use a reference to an object of a
derived class wherever a reference to that object’s base
class object is used.

None

Rec. 7@501:

Do not overload any ‘modifying’ operators on a cl ass
type.

ecma

Rule 7@502:

Do not modify the value of any of the operands in the
implementation of an overloaded operator.

msdn

Rec. 7@503:

If you implement one of oper at or ==(), the Equal s
method or Get HashCode(), implement all three.

msdn

Rec. 7@504:

Use a st ruct when value semantics are desired.

msdn

Rule 7@601:

Allow properties to be set in any order.

msdn

Rec. 7@602:

Use a property rather than a method when the member
is a logical data member.

msdn

Rec. 7@603:

Use a method rather than a property when this is more
appropriate.

Rule 7@604:

Do not create a constructor that does not yield a fully
initialized object.

Rule 7@608:

Always check the result of an as operation.

Rec. 7@610:

Use explicit interface implementation only to prevent
name-clashing or to support optional interfaces.

7.2. Rules and Recommendations

7.2.1.

An honored principle, stated in both [1] and [3].

Exceptionstothisrulearest ati ¢ readonl yfiddsand const fields, which may have any accessibility
deemed appropriate. See also Rec. 5@106.

Rule 7@101: Declare all fields (data members) pri vat e.

I RAD

Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 29 of 48
For External Use 2005-05-19

7.2.2. Rec.7@102: Provide a default pri vat e constructor if there are only stati c
methods and properties on a class.
Instantiating such a class would be usdess.

7.2.3. Rec. 7@105: Explicitly define a pr ot ect ed constructor on an abst r act
base class.

Of course an abstract class cannot be instantiated, so a public constructor should be harmless. However, [3]

states:

Many compilers will insert a publ i ¢ or pr ot ect ed constructor if you do not. Therefore,
for better documentation and readability of your source code, you should explicitly define a
pr ot ect ed constructor on all abstract classes.

Dubious reasoning, but harmless. This recommendation is provisional.

7.2.4. Rec. 7@201: Selection statements (i f -el se and swi t ch) should be used
when the control flow depends on an object’s value; dynamic binding should
be used when the control flow depends on the object’s type.

Thisisageneral OO principle. Please note that it is usually a design error to write a sdection statement that
gueries the type of an object (keywordst ypeof ,i s).

Exception:
Using a sdlection statement to determine if some object implements one or more optional interfacesis a valid
construct though.

7.2.5. Rule 7@301: All variants of an overloaded method shall be used for the same
purpose and have similar behavior.

Doing otherwiseis against the Principle of Least Surprise.

7.2.6. Rec. 7@303: If you must provide the ability to override a method, make only
the most complete overload virtual and define the other operations in terms
of it.

Using the pattern illustrated below requires a derived class to only override the virtual method. Since al the other

methods are implemented by calling the most complete overload, they will automatically use the new

implementation provided by the derived class.

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 30 of 48

For External Use 2005-05-19

public class MiltipleOverri deDeno

{

}

private string soneText;

public Miultipl eOverrideDeno(string s)

{
t hi s. soneText = s;
}
public int IndexOh(string s)
{
return | ndexOf (s, 0);
}
public int IndexOf(string s, int startlndex)
{
return | ndexOf (s, startlndex, soneText.Length- startlndex);
}

public virtual int IndexOf(string s, int startlndex, int count)

{
}

return soneText. | ndexOF (s, startlndex, count);

An even better approach, not required by this coding standard, is to refrain from making vi r t ual methods
publ i ¢, but to givethem pr ot ect ed* accessibility, changing the sample above into:

public class MiltipleOverri deDeno

{

7.2.7.

// same as above ...

public int IndexCOf(string s, int startlndex, int count)

{
}

protected virtual int InternallndexO(string s, int startlndex, int count)

{
}

return Internal I ndexOf (s, startlndex, count);

return soneText. | ndexOF (s, startlndex, count);

Rec. 7@401: Specify methods using preconditions, postconditions,
exceptions; specify classes using invariants.

In other words: attempt to apply Design by Contract (see[5]) principles.

You can use Debug. Assert to ensurethat pre- and post-conditions are only checked in debug builds. In release
builds, this method does not result in any code.

7.2.8.

Rec. 7@402: Use C# to describe preconditions, postconditions, exceptions,
and class invariants.

Compilable preconditions etc. are testable.
The exact form (e.g. assertions, special DbC functions such as require and ensure) is not discussed here.
However, a non-testable (text only) precondition is better than a missing one.

*In C++ you would usepr i vat e, but C#does not allow pri vate virtuals.

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 31 of 48
For External Use 2005-05-19

7.2.9. Rule 7@403: It shall be possible to use a reference to an object of a derived
class wherever areference to that object’s base class object is used.

This ruleis known as the Liskov Substitution Principle, (see[4]), often abbreviated to LSP. Please note that an
i nt erfaceisalsoregarded as a base classin this context.

7.2.10. Rec. 7@501: Do not overload any ‘modifying’ operators on a cl ass type.
In this context the ‘modifying’ operators are those that have a corresponding assignment operator, i.e. the non-
unary versionsof +, -, *, [/, % & |, *, <<and>>.
Thereis very little literature regarding operator overloading in C#. Thereforeit is wise to approach this feature
with some caution.
Overloading operatorson ast r uct typeisgood practice, sinceit isavaluetype. Thecl ass isareference
type and users will probably expect reference semantics, which are not provided by most operators.
Consider acl ass Foo with an overloaded oper at or +(i nt), and thus an impicitly overloaded
oper at or +=(i nt). If we define the function AddTwent y asfollows:

public static void AddTwenty (Foo f)

f += 20;
}
Then this function has no net effect:
{
Foo bar = new Foo(5);
AddTwenty (bar);
/1l note that ‘bar’ is unchanged
/1 the Foo object with value 25 is on its way to the CC. ..
}

The exception to this recommendationisacl ass typethat has complete value semantics, like
System String.

7.2.11. Rule 7@502: Do not modify the value of any of the operands in the
implementation of an overloaded operator.

This rule can be found in a non-normative clause of [2], section 17.9.1. Breaking this rule gives counter-intuitive
results.

7.2.12. Rec. 7@503: If you implement one of oper at or ==(), the Equal s method or
Get HashCode(), implement all three.

Also override this trio when you implement the | Conpar abl e interface.

Do consider implementing all relational operators (! =, <, <=, >, >3)if youimplement any.

If your EQual s method can throw an exception, this may cause problems if objects of that type are put into a

container. Do consider to returnf al se for anul | argument.

The msdn guiddines [3] recommend to return f al se rather than throwing an exception when two incomparable
objects, say the proverbial apples and oranges, are compared. Since this approach sacrifices the last remnants of
type-safety, this recommendation has been weakened.

Exceptions:
In very rare cases it can be meaningful to override Get HashCode() without implementing the other two.
If you implement the Equal s method on a reference type you do not have to implement oper at or ==().

7.2.13. Rec. 7@504: Use a st ruct when value semantics are desired.
More precisdy, ast r uct should be considered for types that meet any of the following criteria:

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 32 of 48
For External Use 2005-05-19

#esAct like primitive types.

#esHave an instance size under ?16 bytes.
&sesAre immutable.

&V alue semantics are desirable.

Remember that ast r uct cannot be derived from.

7.2.14. Rule 7@601: Allow properties to be set in any order.

Properties should be stateless with respect to other properties, i.e. there should not be an observable difference
between first setting property A and then B and its reverse.

7.2.15. Rec. 7@602: Use a property rather than a method when the member is a
logical data member.

7.2.16. Rec. 7@603: Use a method rather than a property when this is more
appropriate.

In some cases a method is better than a property:

& Theoperationis a conversion, such asCbj ect . ToStri ng.

#&The operation is expensive enough that you want to communicate to the user that they should consider
caching the result.

& &0btaining a property value using the get accessor would have an observable side effect.
& &5Calling the member twice in succession produces different results.

#=Theorder of execution isimportant. See Rule 7@601.

#=Themember isst at i ¢ but returns a value that can be changed.

#.&The member returns a copy of an internal array or other reference type.

#=0nly aset accessor would be supplied. Write-only properties tend to be confusing.

7.2.17. Rule 7@604: Do not create a constructor that does not yield a fully initialized
object.

Only create constructors that construct objects that are fully initialized. There shall be no need to set additional
properties. A pr i vat e constructor is exempt fromthisrule.

7.2.18. Rule 7@608: Always check the result of an as operation.

If you use as to obtain a certain interface reference from an object, always ensure that this operation does not
return nul | . Failureto do so may causeaNul | Ref er enceExcept i onat alater stageif the object did not
implement that interface.

7.2.19. Rec. 7@610: Use explicit interface implementation only to prevent name-
clashing or to support optional interfaces.

When you use explicit interface implementation, then the methods implemented by the class involved will not be

visible through the class interface. To access those methods, you must first cast the class object to the requested

interface.

It is recommended to use explicit interface implementation only:

#.=\When you want to prevent name clashing. This can happen when multiple interfaces must be supported which
have equally named methods, or when an existing class must support a new interface in which the interface
has a member which name clashes with a member of the class.

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 33 of 48
For External Use 2005-05-19

&.=\When you want to support several optional interfaces (e.g. | Enurrer at or, | Conpar er, etc) and you do
not want to clutter your class interface with their members.

Consider the following example.
public interface |Fool

voi d Foo()

public interface |Foo2

voi d Foo()

public class FooC ass : |Fool, |Foo2

{
/1 This Foo is only accessible by explictly casting to | Fool
void | Fool. Foo() { ...}
/1 This Foo is only accessible by explictly casting to | Foo2
void | Foo2. Foo() { ...)

}

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C#

For External Use

Page 34 of 48
2005-05-19

8. Exceptions

8.1. Overview

SOURCE = CHECK RULE OR RECOMMENDATION
?

msdn - Rule 8@101: Only throw exceptions in exceptional situations.
+ Rule 8@102: Do not throw exceptions from inside destructors.
msdn = |- Rec. 8@103: Only re-throw exceptions when you want to specialize
the exception.
- Rule 8@104: List the explicit exceptions a method or property can
throw.
- Rule 8@105: Always log that an exception is thrown.
msdn = |- Rec. 8@106: Allow callers to prevent exceptions by providing a
method or property that returns the object’s state.
msdn = |- Rec. 8@107: Use standard exceptions.
msdn = |- Rec. 8@108: Throw informational exceptions.
msdn = |- Rule 8@109: Throw the most specific exception possible.
+ Rule 8@110: Only catch the exceptions explicitly mentioned in the
documentation.
msdn = |+ Rule 8@201: Derive custom exceptions from
Appl i cati onExcepti on.
msdn = |+ Rec. 8@202: Provide common constructors for custom exceptions.
msdn = |- Rule 8@203: Avoid side-effects when throwing recoverable
exceptions.
c++ = |+ Rule 8@204: Do not throw an exception from inside an exception
constructor.

8.2. Rules and Recommendations

8.2.1. Rule8@101: Only throw exceptions in exceptional situations.

Do not throw exceptions in situations that are normal or expected (e.g. end-of-file). Use return values or status
enumerations instead. In general, try to design classes that do not throw exceptions in the normal flow of control.
However, do throw exceptions that a user is not allowed to catch when a situation occurs that may indicate a
design error in the way your classis used.

8.2.2. Rule 8@102: Do not throw exceptions from inside destructors.

When you call an exception from inside a destructor, the CLR will stop executing the destructor, and pass the
exception to the base class destructor (if any). If thereis no base class, then the destructor is discarded.

8.2.3. Rec.8@103: Only re-throw exceptions when you want to specialize the
exception.

Only catch and re-throw exceptions if you want to add additional information and/or change the type of the
exception into a more specific exception. In the latter case, set thel nner Except i on property of the new
exception to the caught exception.

8.2.4. Rule 8@104: List the explicit exceptions a method or property can throw.
Describe the recoverable exceptions using the<except i on> tag.

I RAD

Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 35 of 48
For External Use 2005-05-19

Explicit exceptions are the ones that a method or property explicitly throws from its implementation and which
users are allowed to catch. Exceptions thrown by .NET framework classes and methods used by this
implementation do not have to be listed here.

8.2.5. Rule 8@105: Always log that an exception is thrown.

Logging ensures that if the caller catches your exception and discardsit, traces of this exception can be recovered
at alater stage.

8.2.6. Rec.8@106: Allow callers to prevent exceptions by providing a method or
property that returns the object’s state.

For example, consider a communication layer that will throw anl nval i dOper ati onExcepti onwhenan

attempt is made to call Send() when no connection is available. To allow preventing such a situation, provide a

property such as Connect ed to allow the caller to determine if a connection is available before attempting an

operation.

8.2.7. Rec.8@107: Use standard exceptions.

The .NET framework already provides a set of common exceptions. The table below summarizes the most
common exceptions that are available for applications.

EXCEPTION CONDITION

Appl'i cati onException General application error has occurred that does not fit in the
other more specific exception classes.

I ndexQut Of RangeException Indexing an array or indexable collection outside its valid
range.

I nval i dOperati onException |An action is performed which is not valid considering the
object’s current state.

Not Suppor t edExcepti on An action is performed which is may be valid in the future,
but is not supported.

Argunent Exception An incorrect argument is supplied.

Argument Nul | Excepti on An null reference is supplied as a method’s parameter that

_ does not allow null.
Argunent Qut Of RangeExcept i on | An argument is not within the required range.

8.2.8. Rec.8@108: Throw informational exceptions.

When you instantiate a new exception, set its Message property to a descriptive message that will help the caller
to diagnose the problem. For example, if an argument was incorrect, indicate which argument was the cause of
the problem. Also mention the name (if available) of the object involved.

Also, if you design a new exception class, note that it is possible to add custom properties that can provide
additional details to the caller.

8.2.9. Rule 8@109: Throw the most specific exception possible.
Do not throw a generic exception if a more specific one is available (related to Rec. 8@108).

8.2.10. Rule 8@110: Only catch the exceptions explicitly mentioned in the
documentation.

Moreover, do not catch the base class Except i on or Appl i cati onExcept i on. Exceptions of those

classes generally mean that a non-recoverable problem has occurred.

Exception:

On system-leve or in athread-routine, it is allowed to catch the Except i on class directly, but only when

approval by the Senior Designer has been obtained.

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 36 of 48
For External Use 2005-05-19

8.2.11. Rule 8@201: Derive custom exceptions from Appl i cati onExcepti on.
All exceptions derived from Sy st enExcept i on are reserved for usage by the CLR only.

8.2.12. Rec.8@202: Provide common constructors for custom exceptions.

It is advised to provide the three common constructors that all standard exceptions provide as well. These include:
ez XXXException()

ez XXXException(string nmessage)

5 XXXException(string nmessage, Exception innerExcepti am)

8.2.13. Rule 8@203: Avoid side-effects when throwing recoverable exceptions.

When you throw a recoverable exception, make sure that the object involved stays in a usable and predictable
state. With usableit is meant that the caller can catch the exception, take any necessary actions, and continue to
use the object again. With predictable is meant that the caller can make logical assumptions on the state of the
object.

For instance, if during the process of adding a new item to a list, an exception is raised, then the caller may safely
assume that the item has not been added, and another attempt to re-add it is possible.

8.2.14. Rule 8@204: Do not throw an exception from inside an exception
constructor.

Throwing an exception from inside an exception’s constructor will stop the construction of the exception being

built, and hence, preventing the exception from getting thrown. The other exception is thrown, but this can be

confusing to the user of the class or method concerned.

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 37 of 48
For External Use 2005-05-19

9. Delegates and events

9.1. Overview

SOURCE = CHECK RULE OR RECOMMENDATION

msdn = |- Rule 9@101: Do not make assumptions on the object’s state after
raising an event.
msdn = |- Rule 9@102: Always document from which thread an event handler is
called.
msdn = |- Rec. 9@103: Raise events through a protected virtual method.
- Rule 9@104: Use the sender/arguments signature for event handlers.
msdn = |- Rec. 9@105: Implement add/remove accessors if the number of
handlers for an event must be limited.
msdn = |- Rec. 9@106: Consider providing property-changed events.
+ Rec. 9@107: Consider ani nt er f ace instead of a del egat e.

9.2. Rules and Recommendations

9.2.1. Rule 9@101: Do not make assumptions on the object’s state after raising an
event.
Prepare for any changes to the current object’ s state while executing an event handler. The event handler may

have called other methods or properties that changed the object’ s state (e.g. it may have disposed objects
referenced through a field).

9.2.2. Rule 9@102: Always document from which thread an event handler is called.

Some classes create a dedicated thread or use the Thread Pool to perform some work, and then raise an event. The
consequence of that is that an event handler is executed from another thread than the main thread. For such an
event, the event handler must synchronize (ensure thread-safety) access to shared data (e.g. instance members).

9.2.3. Rec.9@103: Raise events through a protected virtual method.

If a derived class wants to intercept an event, it can override such a virtual method, do its own work, and then
decide whether or not to call the base class version. Since the derived class may decide not to call the base class
method, ensure that it does not do any work required for the base class to function properly.

Name this method OnEvent Nane, where EventName should be replaced with the name of the event. Notice that
an event handler uses the same naming scheme but has a different signature. The following snippet (most parts
left out for brevity) illustrates the difference between the two.

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 38 of 48
For External Use 2005-05-19

/1] <summar y>An exanpl e cl ass</ sumrary>
public class Connection

{
/1 Event definition
public event Event Handl er O osed,;
/1 Method that causes the event to occur
public void C ose()
/1 Do sonething and then raise the event
Ondl osed(new Event Args());
/1 Method that raises the C osed event.
protected OnCl osed(Event Args args)
Gl osed(this, args);
}
}

[1/ <sunmmar y>Mii n ent rypoi nt. </ sunmmary>
public static void Main()
{

Connecti on connecti on = new Connection();
connection. Cl osed += new Event Handl er (OnCd osed) ;

}

/1] <summar y>Event handl er for the C osed event </ sumary>
private static void OnCl osed(object sender, EwentArgs args)

/1 Inplementation |eft out for brevity.

9.24. Rule 9@104: Use the sender/arguments signature for event handlers.

The goal of this recommendation is to have a consistent signature for al event handlers. In general, the event
handler’ s signature should look like this
public del egate void MyEvent Handl er (obj ect sender, Event Args arguments)

Using the base class as the sender type allows derived classes to reuse the same event handler.

The same applies to the arguments parameter. It is recommended to derive from the .NET Framework’s

Event Ar gs class and add your own event data. Using such a class prevents cluttering the event handler’s
signature, allows extending the event data without breaking any existing users, and can accommodate multiple
return values (instead of using reference fiedds). Moreover, al event data should be exposed through properties,
because that allows for verification and preventing access to data that is not always valid in all occurrences of a
certain event.

9.25. Rec.9@105: Implement add/remove accessors if the number of handlers for
an event must be limited.
If you implement theadd and r enpve accessors of an event, then the CLR will call those accessors when an

event handler is added or removed. This allows limiting the number of allowed event handlers, or to check for
certain preconditions.

9.2.6. Rec.9@106: Consider providing property-changed events.

Consider providing events that are raised when certain properties are changed. Such an event should be named

Pr opert yChanged, where Property should be replaced with the name of the property with which this event is
associated.

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 39 of 48
For External Use 2005-05-19

9.2.7. Rec.9@107: Consider ani nterface instead of a del egat e.

If you provide a method as the target for a delegate, the compiler will only ensure that the method signature
matches the delegate s signature.

This means that if you have two classes providing a delegate with the same signature and the same name, and
each class has a method as a target for that ddegate, it is possible to provide the method of the first classas a
target for the delegate in the other class, even though they might not be related at all.

Therefore, it is sometimes better to useinterfaces. The compiler will ensure that you cannot accidentally provide a
class implementing a certain interface to a method that accepts another interface that happens to have to same
name.

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 40 of 48
For External Use 2005-05-19

10. Various data types

10.1. Overview

SOURCE = CHECK RULE OR RECOMMENDATION

msdn = |- Rec. 10@201:Use an enumto strongly type parameters, properties,
and return types.

msdn ? |+ Rule 10@202: Use the default type | nt 32 as the underlying type of
an enumunless there is a reason to use | nt 64.

msdn = |- Rec. 10@203:Use the [FI ags] attribute on an enumif a bitwise
operation is to be performed on the numeric values.

C++ ? |+ Rec. 10@301: Do not use “magic numbers”.

C++ = |+ Rule 10@401:Floating point values shall not be conpar ed using

ei t her the == or ! = operators.

msdn = |- Rec. 10@403: Do not cast types where a loss of precision is possible.

msdn = |- Rule 10@404:Only implement casts that operate on the complete
object.

msdn = |- Rule 10@405: Do not generate a semantically different value with a
cast.

10.2. Rules and Recommendations

10.2.1. Rec.10@201: Use an enumto strongly type parameters, properties, and
return types.
This enhances clarity and type-safety. Try to avoid casting between enumerated types and integral types.

Exception:
In some cases, such as when databases or MIT interfaces that store valuesasi nt sareinvolved, using enurmns
will result in an unacceptable amount of casting. In that case, it is better touseaconst i nt construction.

10.2.2. Rule 10@202: Use the default type | nt 32 as the underlying type of an enum
unless there is areason to use | nt 64.

If the enumrepresents flags and there are currently more than 32 flags, or the enummight grow to that many

flags in the future, usel nt 64.

Do not use any other underlying type because the Operating System will try to align an enumon 32-bit or 64-bit
boundaries (depending on the hardware platform). Using a 8-bit or 16-bit type may result in a performance loss.

10.2.3. Rec. 10@203: Use the [Fl ags] attribute on an enumif a bitwise operation is
to be performed on the numeric values.
Usean enumwith thef | ags attribute only if the value can be completely expressed as a set of bit flags. Do not

use an enumfor open sets (such as the operating system version). Use a plural name for such an enum as stated
in Rule 3@203.

Usage and effect of this attribute are not mentioned in [2] and not at all clearly in the online documentation, so the
benefits of following this recommendation are not obvious.

Theintended use appears to be:

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 41 of 48

For External Use 2005-05-19

[FI ags]
public enum AccessPrivil eges
{

Read = 0x1,

Wite = 0x2,

Append = 0x4,

Del ete = 0x8,

Al | = Read | Wite | Append | Delete
}

10.2.4. Rec.10@301: Do not use “magic numbers”.

Do not useliteral values, either numeric or strings, in your code other than to define symbolic constants. Use the
following pattern to define constants:
public class Watever

public static readonly Col or PapayaWi p = new Col or (OXFFEFD5) ;
public const int MaxNumber Of Wheel s = 18;

}

There are exceptions. thevalues 0, 1 and nul | can nearly aways be used safely. Very often thevalues 2 and -
1 are OK aswdll. Strings intended for logging or tracing are exempt from thisrule. Literals are allowed when
their meaning is clear from the context, and not subject to future changes.

nmean = (a + b) / 2; /1 okay
WaitM I liseconds(waitTinmelnSeconds * 1000); /1 cl ear enough

If the value of one constant depends on the value of another, do attempt to make this explicit in the code, so do
not write
public class SoneSpeci al Cont ai ner

public const int Maxltens = 32;
public const int H ghWaterMark = 24; /1l at 75%

}
but rather do write
public class SonmeSpeci al Cont ai ner

public const int Maxltens = 32;
public const int H ghWaterMark = 3 * Maxltens / 4; // at 75%

}

Please note that an enumcan often be used for certain types of symbolic constants.

10.2.5. Rule 10@401: Floating point values shall not be compared using either the
==or | = operators.

Most floating point values have no exact binary representation and have a limited precision.

Exception:
When afloating point variableis explicitly initialized with a value such as 1.0 or 0.0, and then checked for a
change at a later stage.

10.2.6. Rec. 10@403: Do not cast types where aloss of precision is possible.

For example, do not cast al ong (64-bit) toani nt (32-bit), unless you can guarantee that the value of the
| ong issmall enough to fit in thei nt .

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 42 of 48
For External Use 2005-05-19

10.2.7. Rule 10@404: Only implement casts that operate on the complete object.

In other words, do not cast one type to another using a member of the source type. For example, a But t on class
hasast ri ng property Nane. It isvalid to cast theBut t on totheCont r ol (sinceButt onisaControl),
but it is not valid to cast the But t on to a string by returning the value of the Name property.

10.2.8. Rule 10@405: Do not generate a semantically different value with a cast.

For example, it is appropriate to convert aTi me or Ti neSpanintoan| nt 32. Thel nt 32 still represents the
time or duration. It does not, however, make sense to convert afilename stringsuchasc: \ nybi t map. gi f
intoaBi t map object.

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 43 of 48
For External Use 2005-05-19

11. Coding style

11.1. Overview

SOURCE = CHECK RULE OR RECOMMENDATION

C++ = |- Rule 11@101: Do not mix coding styles within a group of closely
related classes or within a module.

C++ = |+ Rec. 11@403:The publ i c, prot ect ed, and pri vat e sections of
acl ass orstruct shall be declared in that order.

C++ ? |+ Rule 11@407: Write unary, increment, decrement, function call,
subscript, and access operators together with their
operands.

C++ = |+ Rule 11@409: Use spaces instead of tabs.

- Rec. 11@411:Do not create overly long source lines.

11.2. Rules and Recommendations

11.2.1. Rule 11@101: Do not mix coding styles within a group of closely related
classes or within a module.

This coding standard gives you some room in choosing a certain style. Do keep the style consistent within a
certain scope. That scopeis not rigidly defined here, but is at least as big as a sourcefile.

11.2.2. Rec.11@403: The public, protected, and pri vat e sections of acl ass or
struct shall be declared in that order.
Although C# does not have the same concept of accessibility sections as C++, do group themin the given order.

However, keep the fields at the top of the class (preferably inside their own #r egi on). The pr ot ect ed
i nt er nal section goes beforethe pr ot ect ed section, and thei nt er nal section beforethepri vat e section.

11.2.3. Rule 11@407: Write unary, increment, decrement, function call, subscript,
and access operators together with their operands.

This concerns the following operators:

unary: & * + - ~ |
increment and decrement: - -+t
function call and subscript: O [1
access:

It is not allowed to add spaces in between these operators and their operands.
It is not allowed to separate a unary operator from its operand with a newline.
Note: this rule does not apply to thebinary versionsof the& * + - operators.

example:
a=-- b; /1 wrong
a=--¢; /1 right
a=-b- c /1 right
a = (bl + b2) +
(cl - c2) +
d -e - f; /1l also fine: make it as readabl e as possible

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 44 of 48
For External Use 2005-05-19

11.2.4. Rule 11@409: Use spaces instead of tabs.

Different applications interpret tabs differently. Always use spaces instead of tabs. Y ou should change the
settings in Visual Studio .NET (or any other editor) for that.

11.2.5. Rec.11@411: Do not create overly long source lines.

Long lines are hard to read. Many applications, such as printing and difference views, perform poorly with long
lines. A maximum line length of 80 characters has proven workable for C and C++. However, C# tends to be
more verbose and have degper nesting compared to C++, so the limit of 80 characters will often cause a statement
to be split over multiple lines, thus making it somewhat harder to read. This standard does not set any explicit
limit on the length of a source ling, thus leaving the definition of ‘too long’ to groups or projects.

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 45 of 48
For External Use 2005-05-19

Appendix A. Example code

A.l File layout

Thisis asample of the preferred layout. The#r egi on construct has not been included here since this exampleis
too small.

#regi on (C) Koninklijke Philips Electronics N V. 2003

/1

/1 Al rights are reserved. Reprodudion or transmi ssion in whole or in part, in
/1l any formor by any neans, electronic, mechanical or otherw se, is prohibited
/1 without the prior witten perm ssion of the copyright owner

/1

/1 Filenane: PatientAdm nistration.cs

/1

#endr egi on

usi ng System
usi ng System Col | ecti ons;

nanmespace Philips. PmsMR Pl at f orm Pati ent Admi ni stration

{
/1] <summary>
I/l Objects of this class nanage a list of patients and their history.
[l </sunmary>
/1l <remarks>
/1l This class relies on the <see cref="Patient"/> cl ass.
1l </remar ks>
/1l <seeal so cref="Patient"/>
public class PatientlList
{

/1]l <summary>Hol ds a |ist of Patient objects.</summary>
private ArrayList list = new ArraylList();

/1] <summary>Maximum numnber of patients supported. </ sunmary>
private const uint nmaxPatients = 100;

/'l <summary>Defines the gender of the patient.</summary>
publ i ¢ enum Gender
{
/1] <summary>The patient is a nmale.</summary>
Mal e,
/1l <summary>The patient is a fenale.</sumary>
Fermal e,
/1l <summary>A phant om obj ect used for testing</sunmary>
Phant om

—

<over| oads>

Adds new patientsto the |ist.

</ over| oads>

<sunmary>

Adds a new patient to the end of the current |ist.

</ sumary>

<remar ks>

The actual data of the Patient object is not checked or changed.
</remar ks>

<exception cref="Nul | Ref erenceExcepti on">

The <paranref nanme="patient"/> argunment was nul |

</ exception>

<par am nane="pati ent">The patient object to add. </ parane
<returns>

true if the patient was added, falseif the list is
full.

</returns>

lic bool Add(Patient patient)

L = T i N
C e e e e e e e e e e e e e
o i i N S

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 46 of 48
For External Use 2005-05-19

if (null == patient)

t hrow new Nul | Ref er enceExcepti on(
"patient argunent nust not be null");

}

bool success = fal se

if (list.Count < maxPatients)

{
list. Add(patient);
success = true;
/1l Raise the event and pass the new patient to the event
/1 handl er.
Added(t his, new Patient AddedEvent Args(patient));
}

return success;

—

<sunmary>
Adds a new patient at the specified index in the |ist.
</ sumary>
<r emar ks>
The foll owi ng rules apply.
<list type="bullet">
<item
The actual data of the Patient object is not checked or
changed.
<litenp
<item>
The item at the specified <paranref name="index"/> will be
nmoved one place up
<litenp
</list>
</remar ks>
<exception cref="Nul | Ref erenceExcepti on">
The <paranref nanme="patient"/> argunment was nul |
</ exception>
<exception cref="1ndexQut Of Bounds" >
The index was invalid.
</ exception>
<param nane="pati ent">The patient object to add.</param>
<par am name="i ndex">The index to use for inserting.</paranm>
<returns>
true if the patient was added, false if the list is full.
</returns>
i c bool Add(Patient patient, int index)

o e N e

P e e e e e e e

/1l Code left out for brevity.

— e T e e e e e e e e

[l <summary>
/1l Searches the contents of the list for patients of a certain gender.
1] </ summary>
/1l <param name="gender">The gender to use during matching. </ paranp
['l] <returns>
/1] Returns an array of <see cref="Patient"/> objects or null if
/1l no items have been found.
[l <lreturns>
public Patient[] GetPatientsByGender(Gemer gender)
{
/1l Code left out for brevity.
}

I I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 47 of 48

For External Use 2005-05-19

<sunmary>

Gets a value indicating the size of the list.
</ sumary>

<val ue>

The current nunber of entries in the |ist.
</val ue>

ic uint Count

C S~~~
O~

—~T S~~~ —

get
{

}

return |ist. Count;

/1] <summary>

/1l Cccurs when a new patient is added to the |ist.

1] </ summary>

/1] <remarks>

/1] This event typically occurs when <see cref="Add"/> has successfully
/1] added a new patient. The data is passed through an instance of the
/1l <see cref="Patient AddedEvent Args”/> cl ass.
1] <lremarks>
public event Event Handl er Added;

<sunmary>

Hol ds the data associated with the <see cref="Added"/> event.
</ summary>

ic class Patient AddedEvent Args : Event Args

publ i c Pati ent AddedEvent Args(Pati ent rewPati ent)

/1l Code |eft out for brevity
}

/1l Remai nder of the class left out for brevity..

I z l \ D Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 48 of 48
For External Use 2005-05-19
Appendix B. Index of terms
containing bit flags....... 15, 40 interface........... 28,31, 32, 37,39
3rd party code..........cocvriernenne 8 underlying type.......cccou.e. 40 NAMING ..eovveerieeieenieerieeniens 15
with flags attribute.............. 40 invariantcccceeeevvecvvveenn. 28, 30
abbreviation...........ccccceeveenennn 14 enumeration iISKeyword........cccocvvvevinrnenn 29
abstract bitfiddcccoveiiies 12,15
baseclass........ccoevieenienienne 29 NAMING ..ovviiieierie e 15 JAVA .o 7
accessibility ...oooveereeeeeei 28 Equals
SECHIONS ..o 43 and exceptions...........c........ 31 line length
ApplicationException........ 35, 36 method.........ccoveeeveenienne 28,31 MaXimuUM ~oooeeneenieeniene 44
asSEMBIY..cveiieeee e 17 evaluation Liskov Substitution Principle..31
attribute.......ooovvviiiiiiee 8 order of ~...ooovviviiiiiiiie 26 literal value..........ccocvveenennn 41
NAMING.....cccvvrierierienns 12,15 BVENT oo 16, 37 logging
automatic verification............... 7 ACCESSON ... 38 of exceptions..........ceveennen. 35
data.......covieniiiieeee 38 loop
BOOI ... 26 event handlerccoveeveeen, 38 condition.........ceveereereennn, 25
EVENtArgS....ooooeeeeeeee 38 fOr ~ i 25
CHtoii, 8,9, 26, 43, 44 EventHandleroccovvennnneee. 16 variable.......cooveeeeieiiiciinee, 25
calbacK........ccovveeviieiiiinns 12, 16 exception............... 12,17, 18, 34 LSP........ See Liskov Substitution
casing CONSEIUCEOrvvvveeeneenn. 34, 36
(07211 0= 13 CUSIOM ~ ..o 36 magic numbers.................. 40, 41
Pascal ~.......ccoceveeniiinienee 13 fromEquals.......cccoceeveenienne 31 member field
(07> 1S S 41, 42 recoverable ~..........cccuvveee... 36 PrefiX .o 12, 13
CaSHiNG....eevveereee e 40 standard ~S.....ccooeveerieniene 35 method
CALCN oo 35 EXCEPLIONS ..o 34 public virtualcc.cceuee 30
Class. ..o 31 VS Property......cccceeeneeee. 28, 32
base ~...cccceevvveiieeneen 28, 31 falSe .o, 26 methods
operator overloading28, 31 field overloaded.................... 28,29
staticonly......ccceevvvennenn. 28, 29 accessibility.....ccocvvvvieeennnen, 28 (0150 o VO 9 10
SUFFIX. i 15 Private.......coveeiiiriereeie 28 MSDN ..o 7
Commentccoevveenieenienen 18 fields multi-threading..........c.ccooeeennees 7
CONSE.irierree e 20 static readonly.........ccccceneeee 28
constant finalizer ..occovvveeeeeieeeeeeee, 21 NAMESPACEvveeeeerereanns 12, 14
SYymbOliC.....ccovveiiieiieii 41 flagS..ccoveiiireie 40 NaMING.....coveiriiriere e 12
CONSEIUCEON ..o 29 flags attribute...........cccccevenne. 40 naming standard...........cc.ccevueee 7
PrivaLe.....cooveerieieeriereeniens 32 floating point
private ~.......ccccovriernne 28, 29 =20 41 obfuscated code............ccuuv...... 16
CONLAINEYeeveeveeieeie e 31 COMPAriSONccevreeennen. 40, 41 operator
CONVErSION..ccviiieeieeieeie e 42 O i 25 assignment ~........ccoceeveennen 31
COPYHightcoveeieiciee e 18 fOr 100P .oovveveiiee 25 overloading..........c...... 28,31
foreach.....cccoovvviiiie 25 relational ~........cccoeeeveenene 31
DbC See Design by Contract formattingc.ceeveeveeneeneeneens 9 operator==..........cccoceeeruru. 28,31
20 operators
default.......ccoooeeviiiiii 25 GC.rieeeee, 21,23, 24 binaryccoovveeviirieee 43
delegate.........ccceennennn. 16, 37, 39 generated code.........ccoovevieennene 8 UNAMY oo 43
Design by Contract.................. 30 GetHashCode.............c....... 28,31 unary ~ and spaces.............. 43
destructor 21, 23, 24, 34 (0)V/< ¢ ([0 (<Y P 37
Dispose.....ccccoveveeeniereninnnn 23,24 Hungarian notation.................. 13
do100P ...coveiieieee 25 PAAM ..o 18
dynamic binding................ 28,29 IComparable.........cccooeeveennnn 31 postconditioncceeeee 28,30
identifier precondition.............cceeueee 28,30
ECMA. ... 9 NAMING ..ovveeierierie e 13 prefix
ElSe. i 25 IDisposable.......ccccceeveeiieenenn 23 building block ~............ 12,17
ElSeif i 25 if statementccoveeeveenienienne 25 bulding block ~................... 17
ENSUME.....ccoeeeeeeeeeeeeeeeeeeeeee 30 initialization..........cccee....... 25, 26 foreventcooeeeeeeeeiecnvieeen. 17
ENUM. ... 40, 41 iNitialize......coooveveenieiieieeee 20 PreproCESSOrcuveeeree e e 8

Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

XJS155-8301/ 1.3 Coding Standard: C# Page 49 of 49
For External Use 2005-05-19
Principle of Least Surprise......29 conditional ~................. 25, 26 thisfigd......coooevieniiiieeee 17
Privatecccocevevcee e 43 multiple ~ccccoevvenen. 25, 26 throw ..eveeeeeeceeeee 34, 36
private virtualsccocevnene 30 FEEUMNS. ... 18 TrUE . e 26
Property......ccccevcveeene 18, 35, 38 rule typeof keyword...........ccooeennenne 29
ENUM YPL ... 40 breakinga~......cc.ccovevveenene 9 type-safety......cccoovvcirnnnnn 31, 40
expensive getter................... 32
Message ~.....cccoverreerrenne 35 scope undefined behavior.................... 8
Side-effect......ovvviiiieiien 32 OULES e 21 underlying type
Stataless.....vvveeeeeeees 28, 32 selection statement 25, 26, 29 of ENUM .evveeeeiiiiieeee, 40
vs method.........ccceeeee... 28, 32 shadow UNJErsCore........ccevvevvvnnnn.. 12, 14
WHte-oNnlY...cooveveiiciec 32 of NAME....ceeiiiieieeeie 21 unNManagedcooceeveeneereeniens 7
property-changed............... 37,38 SPACES. ..t 44 unmanaged resources.............. 23
protected.........ccvvririiiiienn 43 20 unreachable..........cccocceveeienn 25
101 o] [[43 StrUCE.....ccoeeeieeeeeeeeeeee 28, 31 010157 | 8
SUFFIX v 15
read-onlycccoceveevinienienn, 20 SYIE e 43 ValUB....oooiiiiiiee 18
recommendation SUFFIX .o, 12, 16 value semantics........... 28,31, 32
not following..........cccceenenne 9 18 verification
referencefield.......ccoocvvivinne 21 SuppressFinalize..........cco.c..... 21 AULOMALIC.eeveeeeeieeieee 9
reference semantics.................. 31 SWItCh .o, 25, 26
FEMArkS.....ooovvveenieiene e 18 SyNChronize........occovevvvernenne 37 While...ooiii e, 25
FEQUITE. ..o 30 SystemException...........cee...e. 36
resource management............... 23 XML tags. ...covvveeeeeerieeniee 18
return taS. .o 44

<<< END OF DOCUMENT >>>

I RAD

Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

