
Philips Medical Systems

TRAD Philips’ proprietary, ? 2003 Philips Electronics N.V. All rights reserved

Coding Standard: C#

Philips Medical Systems - Software / SPI

AUTHOR: Vic Hartog and Dennis Doomen
DOC. ID: XJS155-8301
REV. LEVEL: 1.3
DATE: 2005-05-19
STATUS: Authorized

Authorization by: CCB Coding Standards
Reviewers: CCB Coding Standards
Commentators: Paul Jansen (TIOBE Software)
Copy: Archive, Bangalore, Cleveland

Doc.file: gemrcsharpcs_ext.doc [saved: 03 Oct 2005 23:09]

Reviewers: You will be invited for a review meeting. Draft:
Commentators: Comments within 2 weeks to author.

Concept: Reviewers: Comments within 2 weeks to author.

Authorized: This is your personal copy. Destroy all previous levels

XJS155-8301 / 1.3 Coding Standard: C# Page 2 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

Abstract
This coding standard for the C# language is mandatory for PMS. The objective of this coding standard is to have
a positive effect on
??Avoidance of errors/bugs, especially the hard-to-find ones.
??Maintainability, by promoting some proven design principles.
??Maintainability, by requiring or recommending a certain unity of style.
??Performance, by dissuading wasteful practices.
??Rules and recommendations are given that promote reliability and maintainability.

External Use of this Document

The C# coding standard as defined by Philips Medical Systems and published via the TIOBE website
(www.tiobe.com) may be used "as-is" by any interested party.

You may copy, adapt, and redistribute this document for non-commercial use or for your own internal use in a
commercial setting. However, you may not republish this document, nor may you publish or distribute any
adaptation of this document for other than non-commercial use or your own internal use, without first obtaining
express written approval from Philips Medical Systems. Philips Medical Systems will not be liable for any direct,
indirect, special or consequential damages arising out of any use of the document or the performance or
implementation of the contents thereof.

Please send questions and suggestions about the C# coding standard and/or its code checker ClockSharp to
info@tiobe.com.

XJS155-8301 / 1.3 Coding Standard: C# Page 3 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

1. Introduction .. 7

1.1. Objective .. 7
1.2. Scope ... 7
1.3. Rationale .. 7
1.3.1. Sources of inspiration ... 7
1.3.2. Contrast with C++ .. 8
1.4. Applicability... 8
1.5. History ... 8
1.6. Status of document ... 8
1.7. Notational conventions.. 9
1.7.1. Rule.. 9
1.7.2. Recommendation... 9
1.7.3. Checkable... 9
1.7.4. Tabular overview.. 9
1.7.5. Examples.. 9
1.8. Definition of terms and abbreviations .. 9
1.9. References .. 9

2. General rules... 11
2.1. Overview .. 11
2.2. Rules and Recommendations ... 11
2.2.1. Rule 2@102: Every time a recommendation is not followed, this must have a good reason. 11
2.2.2. Rule 2@105: Do not mix code from different providers in one file ... 11

3. Naming conventions.. 12
3.1. Overview .. 12
3.2. Rules and Recommendations ... 13
3.2.1. Rec. 3@101: Use US-English for naming identifiers. ... 13
3.2.2. Rule 3@102: Use Pascal and Camel casing for naming identifiers.. 13
3.2.3. Rule 3@103: Do not use Hungarian notation or add any other type identification to identifiers. 13
3.2.4. Rule 3@104: Do not prefix member fields... 13
3.2.5. Rule 3@105: Do not use casing to differentiate identifiers. ... 13
3.2.6. Rec. 3@106: Use abbreviations with care.. 14
3.2.7. Rule 3@107: Do not use an underscore in identifiers. .. 14
3.2.8. Rec. 3@108: Name an identifier according to its meaning and not its type................................ 14
3.2.9. Rule 3@109: Name namespaces according to a well-defined pattern. 14
3.2.10. Rule 3@110: Do not add a suffix to a class or struct name... 15
3.2.11. Rec. 3@111: Use a noun or a noun phrase to name a class or struct. 15
3.2.12. Rule 3@113: Prefix interfaces with the letter I. .. 15
3.2.13. Rec. 3@120: Use similar names for the default implementation of an interface......................... 15
3.2.14. Rule 3@122: Suffix names of attributes with Attribute. .. 15
3.2.15. Rule 3@201: Do not add an Enum suffix to an enumeration type. ... 15
3.2.16. Rule 3@202: Use singular names for enumeration types. ... 15
3.2.17. Rule 3@203: Use a plural name for enumerations representing bitfields................................... 15
3.2.18. Rec. 3@204: Do not use letters that can be mistaken for digits, and vice versa. 16
3.2.19. Rule 3@301: Add EventHandler to delegates related to events. ... 16
3.2.20. Rule 3@302: Add Callback to delegates related to callback methods................................... 16
3.2.21. Rule 3@303: Do not add a Callback or similar suffix to callback methods.......................... 16
3.2.22. Rec. 3@304: Use a verb (gerund) for naming an event... 16
3.2.23. Rule 3@305: Do not add an Event suffix (or any other type-related suffix) to the name of an

event... 16
3.2.24. Rule 3@306: Use an –ing and –ed form to express pre-events and post-events...................... 16
3.2.25. Rule 3@307: Prefix an event handler with On.. 17

XJS155-8301 / 1.3 Coding Standard: C# Page 4 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

3.2.26. Rule 3@401: Suffix exception classes with Exception.. 17
3.2.27. Rule 3@402: Do not add code-archive related prefixes to identifiers. 17
3.2.28. Rule 3@501: Name DLL assemblies after their containing namespace. 17
3.2.29. Rule 3@502: Do not add MR building block prefixes to source files. 17
3.2.30. Rule 3@503: Use Pascal casing for naming source files... 17
3.2.31. Rule 3@504: Name the source file to the main class .. 17
3.2.32. Rule 3@505: Only use the this. construction to avoid a name clash..................................... 17

4. Comments and embedded documentation ... 18
4.1. Overview .. 18
4.2. Rules and Recommendations ... 18
4.2.1. Rule 4@101: Each file shall contain a header block. .. 18
4.2.2. Rule 4@103: Use // for comments. ... 18
4.2.3. Rule 4@105: All comments shall be written in US English. ... 18
4.2.4. Rule 4@106: Use XML tags for documenting types and members. .. 18
4.2.5. Rec. 4@110: Use #region to group non-public members. .. 19

5. Object lifecycle ... 20
5.1. Overview .. 20
5.2. Rules and recommendations .. 20
5.2.1. Rec. 5@101: Declare and initialize variables close to where they are used................................ 20
5.2.2. Rec. 5@102: If possible, initialize variables at the point of declaration..................................... 20
5.2.3. Rule 5@105: Use a const field to define constant values. ... 20
5.2.4. Rec. 5@106: Use a public static read-only field to define predefined object instances. 20
5.2.5. Rec. 5@107: Set a reference field to null to tell the GC that the object is no longer needed.... 21
5.2.6. Rule 5@108: Do not ‘shadow’ a name in an outer scope.. 21
5.2.7. Rec. 5@111: Avoid implementing a destructor. ... 21
5.2.8. Rule 5@112: If a destructor is needed, also use GC.SuppressFinalize. 21
5.2.9. Rule 5@113: Implement IDisposable if a class uses unmanaged or expensive resources.... 23
5.2.10. Rule 5@114: Do not access any reference type members in the destructor................................ 24
5.2.11. Rule 5@116: Always document when a member returns a copy of a reference type or array..... 24

6. Control flow .. 25
6.1. Overview .. 25
6.2. Rules and Recommendations ... 25
6.2.1. Rule 6@101: Do not change a loop variable inside a for loop block....................................... 25
6.2.2. Rec. 6@102: Update loop variables close to where the loop condition is specified. 25
6.2.3. Rule 6@103: All flow control primitives (if, else, while, for, do, switch) shall be

followed by a block, even if it is empty. ... 25
6.2.4. Rule 6@105: All switch statements shall have a default label as the last case label...... 25
6.2.5. Rule 6@106: An else sub-statement of an if statement shall not be an if statement without

an else part.. 25
6.2.6. Rec. 6@109: Avoid multiple or conditional return statements. .. 26
6.2.7. Rec. 6@112: Do not make explicit comparisons to true or false. 26
6.2.8. Rule 6@115: Do not access a modified object more than once in an expression. 26
6.2.9. Rec. 6@118: Do not use selection statements (if, switch) instead of a simple assignment or

initialization.. 26
7. Object oriented programming ... 28

7.1. Overview .. 28
7.2. Rules and Recommendations ... 28
7.2.1. Rule 7@101: Declare all fields (data members) private. ... 28
7.2.2. Rec. 7@102: Provide a default private constructor if there are only static methods and

properties on a class.. 29
7.2.3. Rec. 7@105: Explicitly define a protected constructor on an abstract base class......... 29

XJS155-8301 / 1.3 Coding Standard: C# Page 5 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

7.2.4. Rec. 7@201: Selection statements (if-else and switch) should be used when the control
flow depends on an object’s value; dynamic binding should be used when the control flow
depends on the object’s type. ... 29

7.2.5. Rule 7@301: All variants of an overloaded method shall be used for the same purpose and have
similar behavior. ... 29

7.2.6. Rec. 7@303: If you must provide the ability to override a method, make only the most complete
overload virtual and define the other operations in terms of it. .. 29

7.2.7. Rec. 7@401: Specify methods using preconditions, postconditions, exceptions; specify classes
using invariants... 30

7.2.8. Rec. 7@402: Use C# to describe preconditions, postconditions, exceptions, and class invariants.30
7.2.9. Rule 7@403: It shall be possible to use a reference to an object of a derived class wherever a

reference to that object’s base class object is used.. 31
7.2.10. Rec. 7@501: Do not overload any ‘modifying’ operators on a class type. 31
7.2.11. Rule 7@502: Do not modify the value of any of the operands in the implementation of an

overloaded operator... 31
7.2.12. Rec. 7@503: If you implement one of operator==(), the Equals method or

GetHashCode(), implement all three. .. 31
7.2.13. Rec. 7@504: Use a struct when value semantics are desired. .. 31
7.2.14. Rule 7@601: Allow properties to be set in any order. .. 32
7.2.15. Rec. 7@602: Use a property rather than a method when the member is a logical data member.. 32
7.2.16. Rec. 7@603: Use a method rather than a property when this is more appropriate. 32
7.2.17. Rule 7@604: Do not create a constructor that does not yield a fully initialized object. 32
7.2.18. Rule 7@608: Always check the result of an as operation. ... 32
7.2.19. Rec. 7@610: Use explicit interface implementation only to prevent name-clashing or to support

optional interfaces... 32
8. Exceptions ... 34

8.1. Overview .. 34
8.2. Rules and Recommendations ... 34
8.2.1. Rule 8@101: Only throw exceptions in exceptional situations.. 34
8.2.2. Rule 8@102: Do not throw exceptions from inside destructors... 34
8.2.3. Rec. 8@103: Only re-throw exceptions when you want to specialize the exception. 34
8.2.4. Rule 8@104: List the explicit exceptions a method or property can throw. 34
8.2.5. Rule 8@105: Always log that an exception is thrown. ... 35
8.2.6. Rec. 8@106: Allow callers to prevent exceptions by providing a method or property that returns

the object’s state. .. 35
8.2.7. Rec. 8@107: Use standard exceptions. .. 35
8.2.8. Rec. 8@108: Throw informational exceptions. .. 35
8.2.9. Rule 8@109: Throw the most specific exception possible. ... 35
8.2.10. Rule 8@110: Only catch the exceptions explicitly mentioned in the documentation................... 35
8.2.11. Rule 8@201: Derive custom exceptions from ApplicationException......................... 36
8.2.12. Rec. 8@202: Provide common constructors for custom exceptions. ... 36
8.2.13. Rule 8@203: Avoid side-effects when throwing recoverable exceptions. 36
8.2.14. Rule 8@204: Do not throw an exception from inside an exception constructor. 36

9. Delegates and events... 37
9.1. Overview .. 37
9.2. Rules and Recommendations ... 37
9.2.1. Rule 9@101: Do not make assumptions on the object’s state after raising an event................... 37
9.2.2. Rule 9@102: Always document from which thread an event handler is called........................... 37
9.2.3. Rec. 9@103: Raise events through a protected virtual method.. 37
9.2.4. Rule 9@104: Use the sender/arguments signature for event handlers. 38
9.2.5. Rec. 9@105: Implement add/remove accessors if the number of handlers for an event must be

limited. ... 38

XJS155-8301 / 1.3 Coding Standard: C# Page 6 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

9.2.6. Rec. 9@106: Consider providing property-changed events. .. 38
9.2.7. Rec. 9@107: Consider an interface instead of a delegate... 39

10. Various data types .. 40
10.1. Overview .. 40
10.2. Rules and Recommendations ... 40
10.2.1. Rec. 10@201: Use an enum to strongly type parameters, properties, and return types. 40
10.2.2. Rule 10@202: Use the default type Int32 as the underlying type of an enum unless there is a

reason to use Int64. ... 40
10.2.3. Rec. 10@203: Use the [Flags] attribute on an enum if a bitwise operation is to be performed

on the numeric values.. 40
10.2.4. Rec. 10@301: Do not use “magic numbers”. ... 41
10.2.5. Rule 10@401: Floating point values shall not be compared using either the == or != operators.41
10.2.6. Rec. 10@403: Do not cast types where a loss of precision is possible. 41
10.2.7. Rule 10@404: Only implement casts that operate on the complete object. 42
10.2.8. Rule 10@405: Do not generate a semantically different value with a cast................................. 42

11. Coding style... 43
11.1. Overview .. 43
11.2. Rules and Recommendations ... 43
11.2.1. Rule 11@101: Do not mix coding styles within a group of closely related classes or within a

module.. 43
11.2.2. Rec. 11@403: The public, protected, and private sections of a class or struct

shall be declared in that order. ... 43
11.2.3. Rule 11@407: Write unary, increment, decrement, function call, subscript, and access operators

together with their operands. ... 43
11.2.4. Rule 11@409: Use spaces instead of tabs.. 44
11.2.5. Rec. 11@411: Do not create overly long source lines... 44

Appendix A. Example code .. 45
A.1 File layout .. 45

Appendix B. Index of terms ... 48

XJS155-8301 / 1.3 Coding Standard: C# Page 7 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

1. Introduction

1.1. Objective
This document requires or recommends certain practices for developing programs in the C# language. The
objective of this coding standard is to have a positive effect on
??Avoidance of errors/bugs, especially the hard-to-find ones.
??Maintainability, by promoting some proven design principles.
??Maintainability, by requiring or recommending a certain unity of style.
??Performance, by dissuading wasteful practices.

1.2. Scope
This standard pertains to the use of the C# language. With very few exceptions, it does not discuss the use of the
.NET class libraries. Certain items that deserve attention have been identified, but have not been included in this
document because treatment in separate documents appears more appropriate. These include items such as:
??Unmanaged code
??COM
??Multi-threading
??Localization (languages, Unicode).
??Remoting
??WinForms
??Security
This standard does not include rules or recommendations on how to layout brackets, braces, and code in general.

1.3. Rationale
Reasons to have a coding standard and to comply with it are not given here, except the objectives listed in section
1.1. In this section the origins of the rules and recommendations are given and some explanation why these were
chosen.

1.3.1. Sources of inspiration
Many of the rules and recommendations were taken from the MSDN C# Usage Guidelines ([3]). The naming
guidelines in that document are identical to those found in Appendix C of the ECMA C# Language Specification
([2]). Naming standards and other style issues are more or less arbitrary, so it seems prudent to follow an existing
convention. The naming standard in this document differs from that in the given references only in some miniscule
details that will hardly ever occur in practice.
Many other recommendations and a few design patterns were also taken from [3]. The problem with that
document is that the guidelines, although quite good, are mostly unsuited for automatic verification.
Some general good practices, most of them concerning Object-Oriented programming, were copied from the
PMS-MR C++ Coding Standard ([1]). Some of these are, unsurprisingly, also listed in [3].
Some coding guidelines for Java, a programming language rather similar to C#, have been studied for additional
recommendations, but all were too vague and/or too specific to Java to have any impact. Any useful guideline was
already present in [1] and/or [3].
The numbering scheme and some of the structure have been copied from [1].

XJS155-8301 / 1.3 Coding Standard: C# Page 8 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

1.3.2. Contrast with C++
A considerable part of a coding standard for C or C++ could be condensed into a single rule, avoid undefined
behavior, and maybe shun implementation defined behavior. Officially C# does not exhibit any of these, barring
a few minor, well-defined exceptions. Most examples of undefined behavior in C++ will cause an exception to be
thrown in C#. Although this is an improvement on the “anything might happen” of C++, it is highly undesirable
for post-release software.

1.4. Applicability
This coding standard applies to all C# code that is part of PMS software products or directly supportive to these
products. Third party software is constrained by this standard if this software is developed specifically for PMS.

1.5. History

Date Level Editor Description
2002-11-14 0.1 Vic Hartog First Draft.
2002-11-xx 0.2 Vic Hartog First Draft, continued.
2003-01-06 0.3 Vic Hartog en Dennis Doomen First Draft, merged.
2003-01-13 0.4 Vic Hartog en Dennis Doomen minor corrections, remove duplicates.
2003-01-15 0.5 Vic Hartog en Dennis Doomen final corrections resulting in the final draft, ready for

review.
2003-02-04 0.6 Dennis Doomen Rework using comments from formal reviews.
2003-02-18 0.7 Dennis Doomen Rework of chapters written by Vic.
2003-03-05 0.8 Dennis Doomen Changed # in numbers into &. Updated verification level

with feedback Paul Jansen. Modified 3@305, 3@501,
6@102, 11@403.

2003-03-10 1.0 Dennis Doomen Final version for authorization.
2004-11-04 1.1 Vic Hartog Some PR’s and CR’s. Most important changes are:

weakened 11@411; weakened 3@505; rewrote 5@102;
deleted 10@402; deleted 4@104; deleted 5@103;
weakened 7@604.

2005-03-14 1.2 Vic Hartog In 3@102 changed casing of constants and readonlies
from camel to Pascal. Weakened 4@106. 7@101 also
exception for const. Intro 5@108. Updated 7@503.

2005-05-19 1.3 Vic Hartog Incorporated reviewer’s comments. Changed header page
to reflect the fact that this is now PMS-wide standard.
Minor clarifications and some typo’s.

1.6. Status of document
This is the authorized version of a coding standard for a language in which no one has much experience. Hardly
any prior art is available to serve as a solid base, except [3].
Items that are probably not treated well, if at all, because of the lack of experience, are
??attributes;
??generated code, although we may assume that the ‘wizards’ in Studio follow the MSDN guidelines;
??unsafe code;
??preprocessor usage.

XJS155-8301 / 1.3 Coding Standard: C# Page 9 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

1.7. Notational conventions

1.7.1. Rule
A rule should be broken only for compelling reasons where no reasonable alternative can be found. The author of
the violating code shall consult with at least one knowledgeable colleague and a senior designer to review said
necessity. A comment in the code explaining the reason for the violation is mandatory.

1.7.2. Recommendation
A recommendation should be followed unless there is good reason to do otherwise. Consultation with a
knowledgeable colleague about the validity of the reason is necessary. A comment in the code is recommended.

1.7.3. Checkable
Rules and recommendations in this coding standard are marked checkable if they are checked by TIOBE’s C#
code checker ClockSharp (see www.clocksharp.com for more details).

1.7.4. Tabular overview
Each chapter starts with a table containing an overview of the rules and recommendations presented in the
chapter. The table has the following form:
SOURCE = CHECK RULE OR RECOMMENDATION
From ? - Number and text of the rule or recommendation

The columns are:
Source indicates the original document from which the text was copied or derived. In most cases this will be C++
for [1] or MSDN for [3].
The entry = in the 2nd column indicates if the text is identical to the one in the source, with ? indicating a small
change.
The 3rd column indicates if it is deemed possible to perform an automatic verification of compliance, where the
entry ‘-‘ means impossible, ‘+’ possible and ‘? ’ incompletely possible.

1.7.5. Examples
Please note that the source code formatting in some examples has been chosen for compactness rather than for
demonstrating good practice. The use of a certain compact style in some of the examples is considered suitable for
tiny code fragments, but should not be emulated in “real” code.

1.8. Definition of terms and abbreviations

Term Description

GAC Global Assembly Cache
GC Garbage Collector
CLR Common Language Runtime

1.9. References

Ref. doc. Number Author Title

[1] XJS-154-1215 Bart van Tongeren PMS-MR C++ Coding Standard
[2] ECMA-334 TC39/TG2 C# Language Specification, ed. Dec 20011

1 An ISO standard is expected by the end of 2003.

XJS155-8301 / 1.3 Coding Standard: C# Page 10 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

Ref. doc. Number Author Title

[3] msdn, unnumbered Design Guidelines for [.NET] Class Library Developers, as
found on the net2

[4] SIGPLAN Notices,
23,5 (May, 1988).

Barbara Liskov Data Abstraction and Hierarchy

[5] Prentice Hall, 1988 Bertrand Meyer Object Oriented Software Construction

2 under http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconnetframeworkdesignguidelines.asp

XJS155-8301 / 1.3 Coding Standard: C# Page 11 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

2. General rules

2.1. Overview
SOURCE = CHECK RULE OR RECOMMENDATION
C++ ? - Rule 2@102: Every time a recommendation is not followed, this must

have a good reason.
 - Rule 2@105: Do not mix code from different providers in one file

2.2. Rules and Recommendations

2.2.1. Rule 2@102: Every time a recommendation is not followed, this must have a
good reason.

Good reasons do not include personal preferences of style.

2.2.2. Rule 2@105: Do not mix code from different providers in one file
In general, third party code will not comply with the coding standard, so do not put such code in the same file as
code written by MR or MIT. Also, do not mix code from MR with code from MIT. This coding standard does not
specify layout rules, so code snippets from both providers may look slightly different.

XJS155-8301 / 1.3 Coding Standard: C# Page 12 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

3. Naming conventions

3.1. Overview
SOURCE = CHECK RULE OR RECOMMENDATION
msdn = - Rec. 3@101: Use US-English for naming identifiers.
msdn = + Rule 3@102: Use Pascal and Camel casing for naming identifiers.
msdn = - Rule 3@103: Do not use Hungarian notation or add any other type

identification to identifiers.
msdn ? + Rule 3@104: Do not prefix member fields.
msdn = + Rule 3@105: Do not use casing to differentiate identifiers.
msdn = - Rec. 3@106: Use abbreviations with care.
msdn ? + Rule 3@107: Do not use an underscore in identifiers.
msdn = - Rec. 3@108: Name an identifier according to its meaning and not its

type.
 + Rule 3@109: Name namespaces according to a well-defined pattern.
msdn = + Rule 3@110: Do not add a suffix to a class or struct name.
msdn = - Rec. 3@111: Use a noun or a noun phrase to name a class or

struct.
msdn = + Rule 3@113: Prefix interfaces with the letter I.
msdn = - Rec. 3@120: Use similar names for the default implementation of an

interface.
msdn = + Rule 3@122: Suffix names of attributes with Attribute.
msdn = + Rule 3@201: Do not add an Enum suffix to an enumeration type.
msdn = - Rule 3@202: Use singular names for enumeration types.
msdn = - Rule 3@203: Use a plural name for enumerations representing

bitfields.
msdn ? + Rec. 3@204: Do not use letters that can be mistaken for digits, and

vice versa.
msdn = - Rule 3@301: Add EventHandler to delegates related to events.
 - Rule 3@302: Add Callback to delegates related to callback

methods.
msdn = + Rule 3@303: Do not add a Callback or similar suffix to callback

methods.
msdn = - Rec. 3@304: Use a verb (gerund) for naming an event.
msdn = + Rule 3@305: Do not add an Event suffix (or any other type-related

suffix) to the name of an event.
msdn = + Rule 3@306: Use an –ing and –ed form to express pre-events and

post-events.
msdn ? - Rule 3@307: Prefix an event handler with On.
msdn = - Rule 3@401: Suffix exception classes with Exception.
 - Rule 3@402: Do not add code-archive related prefixes to identifiers.
 - Rule 3@501: Name DLL assemblies after their containing

namespace.
 - Rule 3@502: Do not add MR building block prefixes to source files.
 + Rule 3@503: Use Pascal casing for naming source files.
 + Rule 3@504: Name the source file to the main class
 + Rule 3@505: Only use the this. construction

XJS155-8301 / 1.3 Coding Standard: C# Page 13 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

3.2. Rules and Recommendations

3.2.1. Rec. 3@101: Use US-English for naming identifiers.

3.2.2. Rule 3@102: Use Pascal and Camel casing for naming identifiers.
?? In Pascal casing the first letter of each word in an identifier is capitalized. For example, BackColor.

?? In Camel casing only the first letter of the second, third, etc. word in a name is capitalized; for example,
backColor.

The table below provides the casing for the most common types.

IDENTIFIER CASE EXAMPLE
Class Pascal AppDomain
Enum type Pascal ErrorLevel
Enum values Pascal FatalError
Event Pascal ValueChange
Exception class Pascal WebException
Field camel listItem
Const Field Pascal MaximumItems
Read-only Static Field Pascal RedValue
Interface Pascal IDisposable
Method Pascal ToString
Namespace Pascal System.Drawing
Parameter camel typeName
Property Pascal BackColor

Two-letter abbreviations in Pascal casing have both letters capitalized. In Camel casing this also holds true,
except at the start of an identifier where both letters are written in lower case. With respect to capitalization in
Pascal and Camel casing, abbreviations with more than two letters are treated as ordinary words.

Some examples:

CAMEL CASING PASCAL CASING
newImage NewImage
uiEntry UIEntry
pmsMR PmsMR

3.2.3. Rule 3@103: Do not use Hungarian notation or add any other type
identification to identifiers.

Use of Hungarian notation is deprecated by companies like Microsoft because it introduces a programming
language-dependency and complicates maintenance activities.

Exceptions:
Rule 3@104, Rule 3@113, Rule 3@122, Rule 3@301, Rule 3@302, Rule 3@307, Rule 3@401.

3.2.4. Rule 3@104: Do not prefix member fields.
In general, a method in which it is difficult to distinguish local variables from member fields is too big.

3.2.5. Rule 3@105: Do not use casing to differentiate identifiers.
Some programming languages (e.g. VB.NET) do not support distinguishing identifiers by case, so do not define a
type called A and a in the same context.

XJS155-8301 / 1.3 Coding Standard: C# Page 14 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

This rule applies to namespaces, properties, methods, method parameters, and types. Please note that it is allowed
to have identifiers that differ only in case in distinct categories, e.g. a property BackColor that wraps the field
backColor.

3.2.6. Rec. 3@106: Use abbreviations with care.
Do not contract words in identifiers, but do use well-known abbreviations. For example, do not use GetWin
instead of GetWindow, but do use a well-known abbreviation such as UI instead of UserInterface.

3.2.7. Rule 3@107: Do not use an underscore in identifiers.

3.2.8. Rec. 3@108: Name an identifier according to its meaning and not its type.
Avoid using language specific terminology in names of identifiers. As an example, suppose you have a number of
overloaded methods to write data types into a stream. Do not use definitions like:

void Write(double doubleValue);
void Write(long longValue);

Instead, use:
void Write(double value);
void Write(long value);

If it is absolutely required to have a uniquely named method for every data type, use Universal Type Names in the
method names. The table below provides the mapping from C# types to Universal types.
C# TYPE NAME UNIVERSAL TYPE

NAME
sbyte SByte
byte Byte
short Int16
ushort UInt16
int Int32
uint UInt32
long Int64
ulong UInt64
float Single
double Double
bool Boolean
char Char
string String
object Object

Based on the example above, the corresponding reading methods may look like this:
double ReadDouble();
long ReadInt64();

3.2.9. Rule 3@109: Name namespaces according to a well-defined pattern.
Namespaces should be written in Pascal casing and named according to the following pattern:
 <company>.<technology>.<top-level component>.<bottom-level component>

MR-specific:
Within MR, the following pattern must be used.
 Philips.PmsMR.<top-level building block>.<building block>

XJS155-8301 / 1.3 Coding Standard: C# Page 15 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

For example, classes from the InterProcessCommunication building block (BB) under
\platform\basicsw\basicarchive must be part of the following namespace:

 Philips.PmsMR.Platform.InterProcessCommunication

MIT-specific:
 Philips.PmsMit.<top-level component>.<bottom-level component>

3.2.10. Rule 3@110: Do not add a suffix to a class or struct name.
Do not add suffixes like Struct or Class to the name of a class or struct.

Exceptions:
Rule 3@122 and Rule 3@401.

3.2.11. Rec. 3@111: Use a noun or a noun phrase to name a class or struct.
Also, if the class involved is a derived class, it is a good practice to use a compound name. For example, if you
have a class named Button, deriving from this class may result in a class named BeveledButton.

3.2.12. Rule 3@113: Prefix interfaces with the letter I.
All interfaces should be prefixed with the letter I. Use a noun (e.g. IComponent), noun phrase (e.g.
ICustomAttributeProvider), or an adjective (e.g. IPersistable) to name an interface.

3.2.13. Rec. 3@120: Use similar names for the default implementation of an
interface.

If you provide a default implementation for a particular interface, use a similar name for the implementing class.
Notice that this only applies to classes that only implement that interface.
For example, a class implementing the IComponent interface could be called Component or
DefaultComponent.

3.2.14. Rule 3@122: Suffix names of attributes with Attribute.
Although this is not required by the C# compiler, this convention is followed by all built-in attributes.

3.2.15. Rule 3@201: Do not add an Enum suffix to an enumeration type.
See also Rule 3@103.

3.2.16. Rule 3@202: Use singular names for enumeration types.
For example, do not name an enumeration type Protocols but name it Protocol instead. Consider the
following example in which only one option is allowed.

public enum Protocol
{
 Tcp,
 Udp,
 Http,
 Ftp
}

3.2.17. Rule 3@203: Use a plural name for enumerations representing bitfields.
Use a plural name for such enumeration types. The following code snippet is a good example of an enumeration
that allows combining multiple options.

XJS155-8301 / 1.3 Coding Standard: C# Page 16 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

[Flags]
public Enum SearchOptions
{
 CaseInsensitive = 0x01,
 WholeWordOnly = 0x02,
 AllDocuments = 0x04,
 Backwards = 0x08,
 AllowWildcards = 0x10
}

3.2.18. Rec. 3@204: Do not use letters that can be mistaken for digits, and vice
versa.

To create obfuscated code, use very short, meaningless names formed from the letters O, o, l, I and the digits 0
and 1. Anyone reading code like

bool b001 = (lo == l0) ? (I1 == 11) : (lOl != 101);

will marvel at your creativity.

3.2.19. Rule 3@301: Add EventHandler to delegates related to events.
Delegates that are used to define an event handler for an event must be suffixed with EventHandler. For
example, the following declaration is correct for a Close event.

public delegate CloseEventHandler(object sender, EventArgs arguments)

3.2.20. Rule 3@302: Add Callback to delegates related to callback methods.
Delegates that are used to pass a reference to a callback method (so not an event) must be suffixed with
Callback. For example:

public delegate AsyncIOFinishedCallback(IpcClient client, string message);

3.2.21. Rule 3@303: Do not add a Callback or similar suffix to callback methods.
Do not add suffixes like Callback or CB to indicate that methods are going to be called through a callback
delegate. You cannot make assumptions on whether methods will be called through a delegate or not. An end-user
may decide to use Asynchronous Delegate Invocation to execute the method.

3.2.22. Rec. 3@304: Use a verb (gerund) for naming an event.
Good examples of events are Closing, Minimizing, and Arriving. For example, the declaration for the
Closing event may look like this:

public event ClosingEventHandler Closing;

3.2.23. Rule 3@305: Do not add an Event suffix (or any other type-related suffix) to
the name of an event.

See also Rule 3@103.

3.2.24. Rule 3@306: Use an –ing and –ed form to express pre-events and post-
events.

Do not use a pattern like BeginXxx and EndXxx. If you want to provide distinct events for expressing a point
of time before and a point of time after a certain occurrence such as a validation event, do not use a pattern like
BeforeValidation and AfterValidation. Instead, use a Validating and Validated pattern.

XJS155-8301 / 1.3 Coding Standard: C# Page 17 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

3.2.25. Rule 3@307: Prefix an event handler with On.
It is good practice to prefix the method that is registered as an event handler with On. For example, a method that
handles the Closing event should be named OnClosing().

Exception:
In some situations, you might be faced with multiple classes exposing the same event name. To allow separate
event handlers use a more intuitive name for the event handler, as long as it is prefixed with On.

3.2.26. Rule 3@401: Suffix exception classes with Exception.
For example: IpcException.

3.2.27. Rule 3@402: Do not add code-archive related prefixes to identifiers.
Do not add MR building block related prefixes, or prefixes that have a relation with the location within the source
archive.

3.2.28. Rule 3@501: Name DLL assemblies after their containing namespace.
To allow storing assemblies in the GAC, their names must be unique. Therefore, use the namespace name as a
prefix of the name of the assembly. As an example, consider a group of classes organized under the namespace
Philips.PmsMR.Platform.OSInterface. In that case, the assembly generated from those classes will
be called Philips.PmsMR.Platform.OSInterface.dll.
If multiple assemblies are built from the same namespace, it is allowed to append a unique postfix to the
namespace name.

3.2.29. Rule 3@502: Do not add MR building block prefixes to source files.
None of the source files from a building block will be visible outside the building block, so there is no use for
building block prefixes. However, it is allowed to have some consistent naming scheme for related source files
(e.g. belonging to a component or class hierarchy).

3.2.30. Rule 3@503: Use Pascal casing for naming source files.
Do not use the underscore character and do not use casing to differentiate names of files.

3.2.31. Rule 3@504: Name the source file to the main class
In addition, do not put more than one major class plus its auxiliary classes (such as EventArgs-derived
classes) in one sourcefile.

3.2.32. Rule 3@505: Only use the this. construction to avoid a name clash
Do not use the this. construction to dereference members. The use of this is only allowed as a reference to
the current class instance or to prevent name clashing between method parameters and class fields.

XJS155-8301 / 1.3 Coding Standard: C# Page 18 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

4. Comments and embedded documentation

4.1. Overview
SOURCE = CHECK RULE OR RECOMMENDATION
c++ = + Rule 4@101: Each file shall contain a header block
c++ = + Rule 4@103: Use // for comments.
c++ = - Rule 4@105: All comments shall be written in US English.
msdn = + Rule 4@106: Use XML tags for documenting types and members.
 - Exception:

Private and nested classes do not have to be documented in this
manner.

Rec. 4@110: Use #region to group non-public members.

4.2. Rules and Recommendations

4.2.1. Rule 4@101: Each file shall contain a header block.
The header block must consist of a #region block containing the following copyright statement and the name
of the file.

#region Copyright Koninklijke Philips Electronics N.V. 2003
//
// All rights are reserved. Reproduction or transmission in whole or in part, in
// any form or by any means, electronic, mechanical or otherwise, is prohibited
// without the prior written consent of the copyright owner.
//
// Filename: PatientAdministration.cs
//
#endregion

4.2.2. Rule 4@103: Use // for comments.
See A.1 for layout examples.

4.2.3. Rule 4@105: All comments shall be written in US English.

4.2.4. Rule 4@106: Use XML tags for documenting types and members.
All public and protected types, methods, fields, events, delegates, etc. shall be documented using XML tags.
Using these tags will allow IntelliSense to provide useful details while using the types. Also, automatic
documentation generation tooling relies on these tags. See A.1 for examples.
Section tags define the different sections within the type documentation.

SECTION TAGS DESCRIPTION LOCATION
<summary> Short description type or member
<remarks> Describes preconditions and other additional information. type or member
<param> Describes the parameters of a method method
<returns> Describes the return value of a method method
<exception> Lists the exceptions that a method or property can throw method, even or

property
<value> Describes the type of the data a property accepts and/or returns property
<example> Contains examples (code or text) related to a member or a type type or member
<seealso> Adds an entry to the See Also section type or member
<overloads> Provides a summary for multiple overloads of a method first method in a

XJS155-8301 / 1.3 Coding Standard: C# Page 19 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

SECTION TAGS DESCRIPTION LOCATION
overload list.

Inline tags can be used within the section tags.
INLINE TAGS DESCRIPTION
<see> Creates a hyperlink to another member or type
<paramref> Creates a checked reference to a parameter

Markup tags are used to apply special formatting to a part of a section.
MARKUP TAGS DESCRIPTION
<code> Changes the indentation policy for code examples
<c> Changes the font to a fixed-wide font (often used with the <code> tag)
<para> Creates a new paragraph
<list> Creates a bulleted list, numbered list, or a table.
 Bold typeface
<i> Italics typeface

Exception:
In an inheritance hierarchy, do not repeat the documentation but use the <see> tag to refer to the base class or
interface member.

Exception:
Private and nested classes do not have to be documented in this manner.

4.2.5. Rec. 4@110: Use #region to group non-public members.
If a class contains a large number of members, attributes, and/or properties, put all non-public members in a
region. Preferably, use separate regions to split-up the private, protected, and internal members, and a region to
hide all fields. It is also allowed to use the #region construct for separating the smaller auxiliary classes from
the main class. See also Rule 2@105.

XJS155-8301 / 1.3 Coding Standard: C# Page 20 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

5. Object lifecycle

5.1. Overview
SOURCE = CHECK RULE OR RECOMMENDATION
c++ = - Rec. 5@101: Declare and initialize variables close to where they are

used.
c++ = - Rec. 5@102: If possible, initialize variables at the point of declaration.
msdn = - Rule 5@105: Use a const field to define constant values.
msdn = - Rec. 5@106: Use a public static read-only field to define predefined

object instances.
msdn = - Rec. 5@107: Set a reference field to null to tell the GC that the

object is no longer needed.
 + Rule 5@108: Do not ‘shadow’ a name in an outer scope
msdn = + An exception is made for the case where a parameter of a method has

the same name as a field, usually causing a
construction like this.foo = foo .

Rec. 5@111: Avoid implementing a destructor.
msdn ? + Rule 5@112: If a destructor is needed, also use

GC.SuppressFinalize.
msdn = - Rule 5@113: Implement IDisposable if a class uses unmanaged

or expensive resources.
msdn = + Rule 5@114: Do not access any reference type members in the

destructor.
 - Rule 5@116: Always document when a member returns a copy of a

reference type or array

5.2. Rules and recommendations

5.2.1. Rec. 5@101: Declare and initialize variables close to where they are used.

5.2.2. Rec. 5@102: If possible, initialize variables at the point of declaration.
Avoid the C style where all variables have to be defined at the beginning of a block, but rather define and
initialize each variable at the point where it is needed.

5.2.3. Rule 5@105: Use a const field to define constant values.
Making it const ensures that memory is allocated for that item only once.

private const int maxUsers = 100;

Exception
If the value of a constant field must be calculated at run-time (in the static constructor), use a static read-
only field instead. See also Rec. 5@106.

5.2.4. Rec. 5@106: Use a public static read-only field to define predefined object
instances.

For example, consider a Color class/struct that expresses a certain color internally as red, green, and blue
components, and this class has a constructor taking a numeric value, then this class may expose several
predefined colors like this.

XJS155-8301 / 1.3 Coding Standard: C# Page 21 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

public struct Color
{
 public static readonly Color Red = new Color(0xFF0000);
 public static readonly Color Black = new Color(0x000000);
 public static readonly Color White = new Color(0xFFFFFF);

 public Color(int rgb)
 {
 // implementation
 }
}

5.2.5. Rec. 5@107: Set a reference field to null to tell the GC that the object is no
longer needed.

Setting reference fields to null may improve memory usage because the object involved will be unreferenced
from that point on, allowing the GC to clean-up the object much earlier. Please note that this recommendation
should not be followed for a variable that is about to go out of scope.

5.2.6. Rule 5@108: Do not ‘shadow’ a name in an outer scope.
Repeating a name that already occurs in an outer scope is seldom intended and may be surprising in maintenance,
although the behaviour is well-defined.

int foo = something;
…
if (whatever)
{
 double foo = 12.34; // do not re-use this name
}

An exception is made for the case where a parameter of a method has the same name as a field, usually causing a
construction like this.foo = foo .

5.2.7. Rec. 5@111: Avoid implementing a destructor.
If a destructor is required, adhere to Rule 5@112 and Rule 5@113.
The use of destructors in C# is demoted since it introduces a severe performance penalty due to way the GC
works. It is also a bad design pattern to clean up any resources in the destructor since you cannot predict at which
time the destructor is called (in other words, it is non-deterministic).
Notice that C# destructors are not really destructors as in C++. They are just a C# compiler feature to represent
CLR Finalizers.

5.2.8. Rule 5@112: If a destructor is needed, also use GC.SuppressFinalize.
If a destructor is needed to verify that a user has called certain cleanup methods such as Close() on a
IpcPeer object, call GC.SuppressFinalize in the Close() method. This ensures that the destructor is
ignored if the user is properly using the class. The following snippet illustrates this pattern.

public class IpcPeer
{
 bool connected = false;

 public void Connect()
 {
 // Do some work and then change the state of this object.
 connected = true;
 }

XJS155-8301 / 1.3 Coding Standard: C# Page 22 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

 public void Close()
 {
 // Close the connection, change the state, and instruct the GC
 // not to call the destructor.
 connected = false;
 GC.SuppressFinalize(this);
 }

 ~IpcPeer()
 {
 // If the destructor is called, then Close() was not called.
 if (connected)
 {
 // Warning! User has not called Close(). Notice that you can’t
 // call Close() from here because the objects involved may
 // have already been garbage collected (see Rule 5@113).
 }
 }
}

XJS155-8301 / 1.3 Coding Standard: C# Page 23 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

5.2.9. Rule 5@113: Implement IDisposable if a class uses unmanaged or
expensive resources.

If a class uses unmanaged resources such as objects returned by C/C++ DLLs, or expensive resources that must
be disposed of as soon as possible, you must implement the IDisposable interface to allow class users to
explicitly release such resources.
The follow code snippet shows the pattern to use for such scenarios.

public class ResourceHolder : IDisposable
{
 ///<summary>
 ///Implementation of the IDisposable interface
 ///</summary>
 public void Dispose()
 {
 // Call internal Dispose(bool)
 Dispose(true);

 // Prevent the destructor from being called
 GC.SuppressFinalize(this);
 }

 ///<summary>
 /// Central method for cleaning up resources
 ///</summary>
 protected virtual void Dispose3(bool explicit)
 {
 // If explicit is true, then this method was called through the
 // public Dispose()
 if (explicit)
 {
 // Release or cleanup managed resources
 }
 // Always release or cleanup (any) unmanaged resources
 }

 ~ResourceHolder()
 {
 // Since other managed objects are disposed automatically, we
 // should not try to dispose any managed resources (see Rule 5@114).
 // We therefore pass false to Dispose()
 Dispose(false);
 }
}

3 Please note that this method could have any other name, e.g. InternalDispose. It has no relation to the parameterless

Dispose() method of IDisposable.

XJS155-8301 / 1.3 Coding Standard: C# Page 24 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

If another class derives from this class, then this class should only override the Dispose(bool) method of the
base class. It should not implement IDisposable itself, nor provide a destructor. The base class’s ‘destructor’
is automatically called.

public class DerivedResourceHolder : ResourceHolder
{
 protected override void Dispose(bool explicit)
 {
 if (explicit)
 {
 // Release or cleanup managed resources of this derived
 // class only.
 }
 // Always release or cleanup (any) unmanaged resources.
 // Call Dispose on our base class.
 base.Dispose(explicit);
 }
}

5.2.10. Rule 5@114: Do not access any reference type members in the destructor.
When the destructor is called by the GC, it is very possible that some or all of the objects referenced by class
members are already garbage collected, so dereferencing those objects may cause exceptions to be thrown.
Only value type members can be accessed (since they live on the stack).

5.2.11. Rule 5@116: Always document when a member returns a copy of a reference
type or array

By default, all members that need to return an internal object or an array of objects will return a reference to that
object or array. In some cases, it is safer to return a copy of an object or an array of objects. In such case, always
clearly document this in the specification.

XJS155-8301 / 1.3 Coding Standard: C# Page 25 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

6. Control flow

6.1. Overview
SOURCE = CHECK RULE OR RECOMMENDATION
C++ = + Rule 6@101: Do not change a loop variable inside a for loop block.
C++ = - Rec. 6@102: Update loop variables close to where the loop condition

is specified.
C++ = + Rule 6@103: All flow control primitives (if, else, while, for, do,

switch) shall be followed by a block, even if it is
empty.

C++ = + Rule 6@105: All switch statements shall have a default label as
the last case label.

C++ = + Rule 6@106: An else sub-statement of an if statement shall not be
an if statement without an else part.

C++ = + Rec. 6@109: Avoid multiple or conditional return statements.
C++ = + Rec. 6@112: Do not make explicit comparisons to true or false.
C++ = + Rule 6@115: Do not access a modified object more than once in an

expression
C++ = - Rec. 6@118: Do not use selection statements (if, switch) instead

of a simple assignment or initialization.

6.2. Rules and Recommendations

6.2.1. Rule 6@101: Do not change a loop variable inside a for loop block.
Updating the loop variable within the loop body is generally considered confusing, even more so if the loop
variable is modified in more than one place. This rule also applies to foreach loops.

6.2.2. Rec. 6@102: Update loop variables close to where the loop condition is
specified.

This makes understanding the loop much easier.

6.2.3. Rule 6@103: All flow control primitives (if, else, while, for, do, switch)
shall be followed by a block, even if it is empty.

Please note that this also avoids possible confusion in statements of the form:
if (b1) if (b2) Foo(); else Bar(); // which ‘if’ goes with the ‘else’?

6.2.4. Rule 6@105: All switch statements shall have a default label as the last
case label.

A comment such as “no action” is recommended where this is the explicit intention. If the default case should be
unreachable, an assertion to this effect is recommended.
If the default label is always the last one, it is easy to locate.

6.2.5. Rule 6@106: An else sub-statement of an if statement shall not be an if
statement without an else part.

The intention of this rule, which applies to else-if constructs, is the same as in Rule 6@105. Consider the
following example.

XJS155-8301 / 1.3 Coding Standard: C# Page 26 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

void Foo(string answer)
{
 if (“no” == answer)
 {
 Console.WriteLine(“You answered with No”);
 }
 else if (“yes” == answer)
 {
 Console.WriteLine(“You answered with Yes”);
 }
 else
 {
 // This block is required, even though you might not care of any other
 // answers than “yes” and “no”.
 }

6.2.6. Rec. 6@109: Avoid multiple or conditional return statements.
One entry, one exit is a sound principle and keeps control flow simple. However, if some cases, such as when
preconditions are checked, it may be good practice to exit a method immediately when a certain precondition is
not met.

6.2.7. Rec. 6@112: Do not make explicit comparisons to true or false.
It is usually bad style to compare a bool-type expression to true or false.

Example:
while (condition == false) // wrong; bad style
while (condition != true) // also wrong
while (((condition == true) == true) == true) // where do you stop?
while (condition) // OK

6.2.8. Rule 6@115: Do not access a modified object more than once in an
expression.

The evaluation order of sub-expressions within an expression is defined in C#, in contrast to C or C++, but such
code is hard to understand.

Example:
v[i] = ++c; // right
v[i] = ++i; // wrong: is v[i] or v[++i] being assigned to?
i = i + 1; // right
i = ++i + 1; // wrong and useless; i += 2 would be clearer

6.2.9. Rec. 6@118: Do not use selection statements (if, switch) instead of a
simple assignment or initialization.

Express your intentions directly. For example, rather than
bool pos;
if (val > 0)
{
 pos = true;
}
else
{
 pos = false;
}

or (slightly better)
bool pos = (val > 0) ? true : false;

XJS155-8301 / 1.3 Coding Standard: C# Page 27 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

write
bool pos;
pos = (val > 0); // single assignment

or even better
bool pos = (val > 0); // initialization

XJS155-8301 / 1.3 Coding Standard: C# Page 28 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

7. Object oriented programming

7.1. Overview
SOURCE = CHECK RULE OR RECOMMENDATION
C++ = + Rule 7@101: Declare all fields (data members) private.
msdn = + Rec. 7@102: Provide a default private constructor if there are only

static methods and properties on a class.
msdn = + Rec. 7@105: Explicitly define a protected constructor on an

abstract base class.
C++ = - Rec. 7@201: Selection statements (if-else and switch) should be

used when the control flow depends on an object’s
value; dynamic binding should be used when the
control flow depends on the object’s type.

Both ? - Rule 7@301: All variants of an overloaded method shall be used for
the same purpose and have similar behavior.

msdn ? + Rec. 7@303: If you must provide the ability to override a method,
make only the most complete overload virtual and
define the other operations in terms of it.

C++ = - Rec. 7@401: Specify methods using preconditions, postconditions,
exceptions; specify classes using invariants.

C++ = - Rec. 7@402: Use C# to describe preconditions, postconditions,
exceptions, and class invariants.

C++ ? - Rule 7@403: It shall be possible to use a reference to an object of a
derived class wherever a reference to that object’s base
class object is used.

None + Rec. 7@501: Do not overload any ‘modifying’ operators on a class
type.

ecma = + Rule 7@502: Do not modify the value of any of the operands in the
implementation of an overloaded operator.

msdn ? + Rec. 7@503: If you implement one of operator==(), the Equals
method or GetHashCode(), implement all three.

msdn ? - Rec. 7@504: Use a struct when value semantics are desired.
msdn = - Rule 7@601: Allow properties to be set in any order.
msdn = - Rec. 7@602: Use a property rather than a method when the member

is a logical data member.
msdn ? - Rec. 7@603: Use a method rather than a property when this is more

appropriate.
 - Rule 7@604: Do not create a constructor that does not yield a fully

initialized object.
 - Rule 7@608: Always check the result of an as operation.
 + Rec. 7@610: Use explicit interface implementation only to prevent

name-clashing or to support optional interfaces.

7.2. Rules and Recommendations

7.2.1. Rule 7@101: Declare all fields (data members) private.
An honored principle, stated in both [1] and [3].
Exceptions to this rule are static readonly fields and const fields, which may have any accessibility
deemed appropriate. See also Rec. 5@106.

XJS155-8301 / 1.3 Coding Standard: C# Page 29 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

7.2.2. Rec. 7@102: Provide a default private constructor if there are only static
methods and properties on a class.

Instantiating such a class would be useless.

7.2.3. Rec. 7@105: Explicitly define a protected constructor on an abstract
base class.

Of course an abstract class cannot be instantiated, so a public constructor should be harmless. However, [3]
states:

Many compilers will insert a public or protected constructor if you do not. Therefore,
for better documentation and readability of your source code, you should explicitly define a
protected constructor on all abstract classes.

Dubious reasoning, but harmless. This recommendation is provisional.

7.2.4. Rec. 7@201: Selection statements (if-else and switch) should be used
when the control flow depends on an object’s value; dynamic binding should
be used when the control flow depends on the object’s type.

This is a general OO principle. Please note that it is usually a design error to write a selection statement that
queries the type of an object (keywords typeof, is).

Exception:
Using a selection statement to determine if some object implements one or more optional interfaces is a valid
construct though.

7.2.5. Rule 7@301: All variants of an overloaded method shall be used for the same
purpose and have similar behavior.

Doing otherwise is against the Principle of Least Surprise.

7.2.6. Rec. 7@303: If you must provide the ability to override a method, make only
the most complete overload virtual and define the other operations in terms
of it.

Using the pattern illustrated below requires a derived class to only override the virtual method. Since all the other
methods are implemented by calling the most complete overload, they will automatically use the new
implementation provided by the derived class.

XJS155-8301 / 1.3 Coding Standard: C# Page 30 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

public class MultipleOverrideDemo
{
 private string someText;

 public MultipleOverrideDemo(string s)
 {
 this.someText = s;
 }

 public int IndexOf(string s)
 {
 return IndexOf(s, 0);
 }

 public int IndexOf(string s, int startIndex)
 {
 return IndexOf(s, startIndex, someText.Length - startIndex);
 }

 public virtual int IndexOf(string s, int startIndex, int count)
 {
 return someText.IndexOf(s, startIndex, count);
 }
}

An even better approach, not required by this coding standard, is to refrain from making virtual methods
public, but to give them protected4 accessibility, changing the sample above into:

public class MultipleOverrideDemo
{
 // same as above …

 public int IndexOf(string s, int startIndex, int count)
 {
 return InternalIndexOf(s, startIndex, count);
 }

 protected virtual int InternalIndexOf(string s, int startIndex, int count)
 {
 return someText.IndexOf(s, startIndex, count);
 }
}

7.2.7. Rec. 7@401: Specify methods using preconditions, postconditions,
exceptions; specify classes using invariants.

In other words: attempt to apply Design by Contract (see [5]) principles.
You can use Debug.Assert to ensure that pre- and post-conditions are only checked in debug builds. In release
builds, this method does not result in any code.

7.2.8. Rec. 7@402: Use C# to describe preconditions, postconditions, exceptions,
and class invariants.

Compilable preconditions etc. are testable.
The exact form (e.g. assertions, special DbC functions such as require and ensure) is not discussed here.
However, a non-testable (text only) precondition is better than a missing one.

4 In C++ you would use private, but C# does not allow private virtuals.

XJS155-8301 / 1.3 Coding Standard: C# Page 31 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

7.2.9. Rule 7@403: It shall be possible to use a reference to an object of a derived
class wherever a reference to that object’s base class object is used.

This rule is known as the Liskov Substitution Principle, (see [4]), often abbreviated to LSP. Please note that an
interface is also regarded as a base class in this context.

7.2.10. Rec. 7@501: Do not overload any ‘modifying’ operators on a class type.
In this context the ‘modifying’ operators are those that have a corresponding assignment operator, i.e. the non-
unary versions of +, -, *, /, %, &, |, ^, << and >>.
There is very little literature regarding operator overloading in C#. Therefore it is wise to approach this feature
with some caution.
Overloading operators on a struct type is good practice, since it is a value type. The class is a reference
type and users will probably expect reference semantics, which are not provided by most operators.
Consider a class Foo with an overloaded operator+(int), and thus an impicitly overloaded
operator+=(int). If we define the function AddTwenty as follows:

public static void AddTwenty (Foo f)
{
 f += 20;
}

Then this function has no net effect:
{
 Foo bar = new Foo(5);
 AddTwenty (bar);
 // note that ‘bar’ is unchanged
 // the Foo object with value 25 is on its way to the GC...
}

The exception to this recommendation is a class type that has complete value semantics, like
System.String.

7.2.11. Rule 7@502: Do not modify the value of any of the operands in the
implementation of an overloaded operator.

This rule can be found in a non-normative clause of [2], section 17.9.1. Breaking this rule gives counter-intuitive
results.

7.2.12. Rec. 7@503: If you implement one of operator==(), the Equals method or
GetHashCode(), implement all three.

Also override this trio when you implement the IComparable interface.
Do consider implementing all relational operators (!=, <, <=, >, >=) if you implement any.
If your Equals method can throw an exception, this may cause problems if objects of that type are put into a
container. Do consider to return false for a null argument.
The msdn guidelines [3] recommend to return false rather than throwing an exception when two incomparable
objects, say the proverbial apples and oranges, are compared. Since this approach sacrifices the last remnants of
type-safety, this recommendation has been weakened.
Exceptions:
In very rare cases it can be meaningful to override GetHashCode() without implementing the other two.
If you implement the Equals method on a reference type you do not have to implement operator==().

7.2.13. Rec. 7@504: Use a struct when value semantics are desired.
More precisely, a struct should be considered for types that meet any of the following criteria:

XJS155-8301 / 1.3 Coding Standard: C# Page 32 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

??Act like primitive types.
??Have an instance size under ? 16 bytes.
??Are immutable.
??Value semantics are desirable.
Remember that a struct cannot be derived from.

7.2.14. Rule 7@601: Allow properties to be set in any order.
Properties should be stateless with respect to other properties, i.e. there should not be an observable difference
between first setting property A and then B and its reverse.

7.2.15. Rec. 7@602: Use a property rather than a method when the member is a
logical data member.

7.2.16. Rec. 7@603: Use a method rather than a property when this is more
appropriate.

In some cases a method is better than a property:
??The operation is a conversion, such as Object.ToString.
??The operation is expensive enough that you want to communicate to the user that they should consider

caching the result.
??Obtaining a property value using the get accessor would have an observable side effect.
??Calling the member twice in succession produces different results.
??The order of execution is important. See Rule 7@601.
??The member is static but returns a value that can be changed.
??The member returns a copy of an internal array or other reference type.
??Only a set accessor would be supplied. Write-only properties tend to be confusing.

7.2.17. Rule 7@604: Do not create a constructor that does not yield a fully initialized
object.

Only create constructors that construct objects that are fully initialized. There shall be no need to set additional
properties. A private constructor is exempt from this rule.

7.2.18. Rule 7@608: Always check the result of an as operation.
If you use as to obtain a certain interface reference from an object, always ensure that this operation does not
return null. Failure to do so may cause a NullReferenceException at a later stage if the object did not
implement that interface.

7.2.19. Rec. 7@610: Use explicit interface implementation only to prevent name-
clashing or to support optional interfaces.

When you use explicit interface implementation, then the methods implemented by the class involved will not be
visible through the class interface. To access those methods, you must first cast the class object to the requested
interface.
It is recommended to use explicit interface implementation only:
??When you want to prevent name clashing. This can happen when multiple interfaces must be supported which

have equally named methods, or when an existing class must support a new interface in which the interface
has a member which name clashes with a member of the class.

XJS155-8301 / 1.3 Coding Standard: C# Page 33 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

??When you want to support several optional interfaces (e.g. IEnumerator, IComparer, etc) and you do
not want to clutter your class interface with their members.

Consider the following example.
public interface IFoo1
{
 void Foo()
}

public interface IFoo2
{
 void Foo()
}

public class FooClass : IFoo1, IFoo2
{
 // This Foo is only accessible by explictly casting to IFoo1
 void IFoo1.Foo() { … }

 // This Foo is only accessible by explictly casting to IFoo2
 void IFoo2.Foo() { …)
}

XJS155-8301 / 1.3 Coding Standard: C# Page 34 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

8. Exceptions

8.1. Overview
SOURCE = CHECK RULE OR RECOMMENDATION
msdn ? - Rule 8@101: Only throw exceptions in exceptional situations.
 + Rule 8@102: Do not throw exceptions from inside destructors.
msdn = - Rec. 8@103: Only re-throw exceptions when you want to specialize

the exception.
 - Rule 8@104: List the explicit exceptions a method or property can

throw.
 - Rule 8@105: Always log that an exception is thrown.
msdn = - Rec. 8@106: Allow callers to prevent exceptions by providing a

method or property that returns the object’s state.
msdn = - Rec. 8@107: Use standard exceptions.
msdn = - Rec. 8@108: Throw informational exceptions.
msdn = - Rule 8@109: Throw the most specific exception possible.
 + Rule 8@110: Only catch the exceptions explicitly mentioned in the

documentation.
msdn = + Rule 8@201: Derive custom exceptions from

ApplicationException.
msdn = + Rec. 8@202: Provide common constructors for custom exceptions.
msdn = - Rule 8@203: Avoid side-effects when throwing recoverable

exceptions.
c++ = + Rule 8@204: Do not throw an exception from inside an exception

constructor.

8.2. Rules and Recommendations

8.2.1. Rule 8@101: Only throw exceptions in exceptional situations.
Do not throw exceptions in situations that are normal or expected (e.g. end-of-file). Use return values or status
enumerations instead. In general, try to design classes that do not throw exceptions in the normal flow of control.
However, do throw exceptions that a user is not allowed to catch when a situation occurs that may indicate a
design error in the way your class is used.

8.2.2. Rule 8@102: Do not throw exceptions from inside destructors.
When you call an exception from inside a destructor, the CLR will stop executing the destructor, and pass the
exception to the base class destructor (if any). If there is no base class, then the destructor is discarded.

8.2.3. Rec. 8@103: Only re-throw exceptions when you want to specialize the
exception.

Only catch and re-throw exceptions if you want to add additional information and/or change the type of the
exception into a more specific exception. In the latter case, set the InnerException property of the new
exception to the caught exception.

8.2.4. Rule 8@104: List the explicit exceptions a method or property can throw.
Describe the recoverable exceptions using the <exception> tag.

XJS155-8301 / 1.3 Coding Standard: C# Page 35 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

Explicit exceptions are the ones that a method or property explicitly throws from its implementation and which
users are allowed to catch. Exceptions thrown by .NET framework classes and methods used by this
implementation do not have to be listed here.

8.2.5. Rule 8@105: Always log that an exception is thrown.
Logging ensures that if the caller catches your exception and discards it, traces of this exception can be recovered
at a later stage.

8.2.6. Rec. 8@106: Allow callers to prevent exceptions by providing a method or
property that returns the object’s state.

For example, consider a communication layer that will throw an InvalidOperationException when an
attempt is made to call Send() when no connection is available. To allow preventing such a situation, provide a
property such as Connected to allow the caller to determine if a connection is available before attempting an
operation.

8.2.7. Rec. 8@107: Use standard exceptions.
The .NET framework already provides a set of common exceptions. The table below summarizes the most
common exceptions that are available for applications.

EXCEPTION CONDITION
ApplicationException General application error has occurred that does not fit in the

other more specific exception classes.
IndexOutOfRangeException Indexing an array or indexable collection outside its valid

range.
InvalidOperationException An action is performed which is not valid considering the

object’s current state.
NotSupportedException An action is performed which is may be valid in the future,

but is not supported.
ArgumentException An incorrect argument is supplied.
ArgumentNullException An null reference is supplied as a method’s parameter that

does not allow null.
ArgumentOutOfRangeException An argument is not within the required range.

8.2.8. Rec. 8@108: Throw informational exceptions.
When you instantiate a new exception, set its Message property to a descriptive message that will help the caller
to diagnose the problem. For example, if an argument was incorrect, indicate which argument was the cause of
the problem. Also mention the name (if available) of the object involved.
Also, if you design a new exception class, note that it is possible to add custom properties that can provide
additional details to the caller.

8.2.9. Rule 8@109: Throw the most specific exception possible.
Do not throw a generic exception if a more specific one is available (related to Rec. 8@108).

8.2.10. Rule 8@110: Only catch the exceptions explicitly mentioned in the
documentation.

Moreover, do not catch the base class Exception or ApplicationException. Exceptions of those
classes generally mean that a non-recoverable problem has occurred.
Exception:
On system-level or in a thread-routine, it is allowed to catch the Exception class directly, but only when
approval by the Senior Designer has been obtained.

XJS155-8301 / 1.3 Coding Standard: C# Page 36 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

8.2.11. Rule 8@201: Derive custom exceptions from ApplicationException.
All exceptions derived from SystemException are reserved for usage by the CLR only.

8.2.12. Rec. 8@202: Provide common constructors for custom exceptions.
It is advised to provide the three common constructors that all standard exceptions provide as well. These include:
?? XxxException()
?? XxxException(string message)
?? XxxException(string message, Exception innerException)

8.2.13. Rule 8@203: Avoid side-effects when throwing recoverable exceptions.
When you throw a recoverable exception, make sure that the object involved stays in a usable and predictable
state. With usable it is meant that the caller can catch the exception, take any necessary actions, and continue to
use the object again. With predictable is meant that the caller can make logical assumptions on the state of the
object.
For instance, if during the process of adding a new item to a list, an exception is raised, then the caller may safely
assume that the item has not been added, and another attempt to re-add it is possible.

8.2.14. Rule 8@204: Do not throw an exception from inside an exception
constructor.

Throwing an exception from inside an exception’s constructor will stop the construction of the exception being
built, and hence, preventing the exception from getting thrown. The other exception is thrown, but this can be
confusing to the user of the class or method concerned.

XJS155-8301 / 1.3 Coding Standard: C# Page 37 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

9. Delegates and events

9.1. Overview
SOURCE = CHECK RULE OR RECOMMENDATION
msdn = - Rule 9@101: Do not make assumptions on the object’s state after

raising an event.
msdn = - Rule 9@102: Always document from which thread an event handler is

called.
msdn = - Rec. 9@103: Raise events through a protected virtual method.
 - Rule 9@104: Use the sender/arguments signature for event handlers.
msdn = - Rec. 9@105: Implement add/remove accessors if the number of

handlers for an event must be limited.
msdn = - Rec. 9@106: Consider providing property-changed events.
 + Rec. 9@107: Consider an interface instead of a delegate.

9.2. Rules and Recommendations

9.2.1. Rule 9@101: Do not make assumptions on the object’s state after raising an
event.

Prepare for any changes to the current object’s state while executing an event handler. The event handler may
have called other methods or properties that changed the object’s state (e.g. it may have disposed objects
referenced through a field).

9.2.2. Rule 9@102: Always document from which thread an event handler is called.
Some classes create a dedicated thread or use the Thread Pool to perform some work, and then raise an event. The
consequence of that is that an event handler is executed from another thread than the main thread. For such an
event, the event handler must synchronize (ensure thread-safety) access to shared data (e.g. instance members).

9.2.3. Rec. 9@103: Raise events through a protected virtual method.
If a derived class wants to intercept an event, it can override such a virtual method, do its own work, and then
decide whether or not to call the base class version. Since the derived class may decide not to call the base class
method, ensure that it does not do any work required for the base class to function properly.
Name this method OnEventName, where EventName should be replaced with the name of the event. Notice that
an event handler uses the same naming scheme but has a different signature. The following snippet (most parts
left out for brevity) illustrates the difference between the two.

XJS155-8301 / 1.3 Coding Standard: C# Page 38 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

///<summary>An example class</summary>
public class Connection
{
 // Event definition
 public event EventHandler Closed;

 // Method that causes the event to occur
 public void Close()
 {
 // Do something and then raise the event
 OnClosed(new EventArgs());

 // Method that raises the Closed event.
 protected OnClosed(EventArgs args)
 {
 Closed(this, args);
 }
}

///<summary>Main entrypoint.</summary>
public static void Main()
{
 Connection connection = new Connection();
 connection.Closed += new EventHandler(OnClosed);
}

///<summary>Event handler for the Closed event</summary>
private static void OnClosed(object sender, EventArgs args)
{
 // Implementation left out for brevity.
}

9.2.4. Rule 9@104: Use the sender/arguments signature for event handlers.
The goal of this recommendation is to have a consistent signature for all event handlers. In general, the event
handler’s signature should look like this

public delegate void MyEventHandler(object sender, EventArgs arguments)

Using the base class as the sender type allows derived classes to reuse the same event handler.
The same applies to the arguments parameter. It is recommended to derive from the .NET Framework’s
EventArgs class and add your own event data. Using such a class prevents cluttering the event handler’s
signature, allows extending the event data without breaking any existing users, and can accommodate multiple
return values (instead of using reference fields). Moreover, all event data should be exposed through properties,
because that allows for verification and preventing access to data that is not always valid in all occurrences of a
certain event.

9.2.5. Rec. 9@105: Implement add/remove accessors if the number of handlers for
an event must be limited.

If you implement the add and remove accessors of an event, then the CLR will call those accessors when an
event handler is added or removed. This allows limiting the number of allowed event handlers, or to check for
certain preconditions.

9.2.6. Rec. 9@106: Consider providing property-changed events.
Consider providing events that are raised when certain properties are changed. Such an event should be named
PropertyChanged, where Property should be replaced with the name of the property with which this event is
associated.

XJS155-8301 / 1.3 Coding Standard: C# Page 39 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

9.2.7. Rec. 9@107: Consider an interface instead of a delegate.
If you provide a method as the target for a delegate, the compiler will only ensure that the method signature
matches the delegate’s signature.
This means that if you have two classes providing a delegate with the same signature and the same name, and
each class has a method as a target for that delegate, it is possible to provide the method of the first class as a
target for the delegate in the other class, even though they might not be related at all.
Therefore, it is sometimes better to use interfaces. The compiler will ensure that you cannot accidentally provide a
class implementing a certain interface to a method that accepts another interface that happens to have to same
name.

XJS155-8301 / 1.3 Coding Standard: C# Page 40 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

10. Various data types

10.1. Overview
SOURCE = CHECK RULE OR RECOMMENDATION
msdn = - Rec. 10@201: Use an enum to strongly type parameters, properties,

and return types.
msdn ? + Rule 10@202: Use the default type Int32 as the underlying type of

an enum unless there is a reason to use Int64.
msdn = - Rec. 10@203: Use the [Flags] attribute on an enum if a bitwise

operation is to be performed on the numeric values.
C++ ? + Rec. 10@301: Do not use “magic numbers”.
C++ = + Rule 10@401: Floating point values shall not be compared using

either the == or != operators.
msdn = - Rec. 10@403: Do not cast types where a loss of precision is possible.
msdn = - Rule 10@404: Only implement casts that operate on the complete

object.
msdn = - Rule 10@405: Do not generate a semantically different value with a

cast.

10.2. Rules and Recommendations

10.2.1. Rec. 10@201: Use an enum to strongly type parameters, properties, and
return types.

This enhances clarity and type-safety. Try to avoid casting between enumerated types and integral types.

Exception:
In some cases, such as when databases or MIT interfaces that store values as ints are involved, using enums
will result in an unacceptable amount of casting. In that case, it is better to use a const int construction.

10.2.2. Rule 10@202: Use the default type Int32 as the underlying type of an enum
unless there is a reason to use Int64.

If the enum represents flags and there are currently more than 32 flags, or the enum might grow to that many
flags in the future, use Int64.
Do not use any other underlying type because the Operating System will try to align an enum on 32-bit or 64-bit
boundaries (depending on the hardware platform). Using a 8-bit or 16-bit type may result in a performance loss.

10.2.3. Rec. 10@203: Use the [Flags] attribute on an enum if a bitwise operation is
to be performed on the numeric values.

Use an enum with the flags attribute only if the value can be completely expressed as a set of bit flags. Do not
use an enum for open sets (such as the operating system version). Use a plural name for such an enum, as stated
in Rule 3@203.
Usage and effect of this attribute are not mentioned in [2] and not at all clearly in the online documentation, so the
benefits of following this recommendation are not obvious.
The intended use appears to be:

XJS155-8301 / 1.3 Coding Standard: C# Page 41 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

[Flags]
public enum AccessPrivileges
{
 Read = 0x1,
 Write = 0x2,
 Append = 0x4,
 Delete = 0x8,
 All = Read | Write | Append | Delete
}

10.2.4. Rec. 10@301: Do not use “magic numbers”.
Do not use literal values, either numeric or strings, in your code other than to define symbolic constants. Use the
following pattern to define constants:

public class Whatever
{
 public static readonly Color PapayaWhip = new Color(0xFFEFD5);
 public const int MaxNumberOfWheels = 18;
}

There are exceptions: the values 0, 1 and null can nearly always be used safely. Very often the values 2 and -
1 are OK as well. Strings intended for logging or tracing are exempt from this rule. Literals are allowed when
their meaning is clear from the context, and not subject to future changes.

mean = (a + b) / 2; // okay
WaitMilliseconds(waitTimeInSeconds * 1000); // clear enough

If the value of one constant depends on the value of another, do attempt to make this explicit in the code, so do
not write

public class SomeSpecialContainer
{
 public const int MaxItems = 32;
 public const int HighWaterMark = 24; // at 75%
 …
}

but rather do write
public class SomeSpecialContainer
{
 public const int MaxItems = 32;
 public const int HighWaterMark = 3 * MaxItems / 4; // at 75%
 …
}

Please note that an enum can often be used for certain types of symbolic constants.

10.2.5. Rule 10@401: Floating point values shall not be compared using either the
== or != operators.

Most floating point values have no exact binary representation and have a limited precision.

Exception:
When a floating point variable is explicitly initialized with a value such as 1.0 or 0.0, and then checked for a
change at a later stage.

10.2.6. Rec. 10@403: Do not cast types where a loss of precision is possible.
For example, do not cast a long (64-bit) to an int (32-bit), unless you can guarantee that the value of the
long is small enough to fit in the int.

XJS155-8301 / 1.3 Coding Standard: C# Page 42 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

10.2.7. Rule 10@404: Only implement casts that operate on the complete object.
In other words, do not cast one type to another using a member of the source type. For example, a Button class
has a string property Name. It is valid to cast the Button to the Control (since Button is a Control),
but it is not valid to cast the Button to a string by returning the value of the Name property.

10.2.8. Rule 10@405: Do not generate a semantically different value with a cast.
For example, it is appropriate to convert a Time or TimeSpan into an Int32. The Int32 still represents the
time or duration. It does not, however, make sense to convert a file name string such as c:\mybitmap.gif
into a Bitmap object.

XJS155-8301 / 1.3 Coding Standard: C# Page 43 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

11. Coding style

11.1. Overview
SOURCE = CHECK RULE OR RECOMMENDATION
C++ = - Rule 11@101: Do not mix coding styles within a group of closely

related classes or within a module.
C++ = + Rec. 11@403: The public, protected, and private sections of

a class or struct shall be declared in that order.
C++ ? + Rule 11@407: Write unary, increment, decrement, function call,

subscript, and access operators together with their
operands.

C++ = + Rule 11@409: Use spaces instead of tabs.
 - Rec. 11@411: Do not create overly long source lines.

11.2. Rules and Recommendations

11.2.1. Rule 11@101: Do not mix coding styles within a group of closely related
classes or within a module.

This coding standard gives you some room in choosing a certain style. Do keep the style consistent within a
certain scope. That scope is not rigidly defined here, but is at least as big as a source file.

11.2.2. Rec. 11@403: The public, protected, and private sections of a class or
struct shall be declared in that order.

Although C# does not have the same concept of accessibility sections as C++, do group them in the given order.
However, keep the fields at the top of the class (preferably inside their own #region). The protected
internal section goes before the protected section, and the internal section before the private section.

11.2.3. Rule 11@407: Write unary, increment, decrement, function call, subscript,
and access operators together with their operands.

This concerns the following operators:
unary: & * + - ~ !
increment and decrement: -- ++
function call and subscript: () []
access: .

It is not allowed to add spaces in between these operators and their operands.
It is not allowed to separate a unary operator from its operand with a newline.
Note: this rule does not apply to the binary versions of the & * + - operators.
example:
a = -- b; // wrong
a = --c; // right

a = -b - c; // right
a = (b1 + b2) +
 (c1 - c2) +
 d – e - f; // also fine: make it as readable as possible

XJS155-8301 / 1.3 Coding Standard: C# Page 44 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

11.2.4. Rule 11@409: Use spaces instead of tabs.
Different applications interpret tabs differently. Always use spaces instead of tabs. You should change the
settings in Visual Studio .NET (or any other editor) for that.

11.2.5. Rec. 11@411: Do not create overly long source lines.
Long lines are hard to read. Many applications, such as printing and difference views, perform poorly with long
lines. A maximum line length of 80 characters has proven workable for C and C++. However, C# tends to be
more verbose and have deeper nesting compared to C++, so the limit of 80 characters will often cause a statement
to be split over multiple lines, thus making it somewhat harder to read. This standard does not set any explicit
limit on the length of a source line, thus leaving the definition of ‘too long’ to groups or projects.

XJS155-8301 / 1.3 Coding Standard: C# Page 45 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

Appendix A. Example code

A.1 File layout
This is a sample of the preferred layout. The #region construct has not been included here since this example is
too small.

#region (C) Koninklijke Philips Electronics N.V. 2003
//
// All rights are reserved. Reproduction or transmission in whole or in part, in
// any form or by any means, electronic, mechanical or otherwise, is prohibited
// without the prior written permission of the copyright owner.
//
// Filename: PatientAdministration.cs
//
#endregion

using System;
using System.Collections;

namespace Philips.PmsMR.Platform.PatientAdministration
{
 /// <summary>
 /// Objects of this class manage a list of patients and their history.
 /// </summary>
 /// <remarks>
 /// This class relies on the <see cref="Patient"/> class.
 /// </remarks>
 /// <seealso cref="Patient"/>
 public class PatientList
 {
 /// <summary>Holds a list of Patient objects.</summary>
 private ArrayList list = new ArrayList();

 /// <summary>Maximum number of patients supported.</summary>
 private const uint maxPatients = 100;

 /// <summary>Defines the gender of the patient.</summary>
 public enum Gender
 {
 /// <summary>The patient is a male.</summary>
 Male,
 /// <summary>The patient is a female.</summary>
 Female,
 /// <summary>A phantom object used for testing</summary>
 Phantom
 }

 /// <overloads>
 /// Adds new patients to the list.
 /// </overloads>
 /// <summary>
 /// Adds a new patient to the end of the current list.
 /// </summary>
 /// <remarks>
 /// The actual data of the Patient object is not checked or changed.
 /// </remarks>
 /// <exception cref="NullReferenceException">
 /// The <paramref name="patient"/> argument was null.
 /// </exception>
 /// <param name="patient">The patient object to add.</param>
 /// <returns>
 /// true if the patient was added, false if the list is
 /// full.
 /// </returns>
 public bool Add(Patient patient)
 {

XJS155-8301 / 1.3 Coding Standard: C# Page 46 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

 if (null == patient)
 {
 throw new NullReferenceException(
 "patient argument must not be null");
 }

 bool success = false;

 if (list.Count < maxPatients)
 {
 list.Add(patient);
 success = true;

 // Raise the event and pass the new patient to the event
 // handler.
 Added(this, new PatientAddedEventArgs(patient));
 }

 return success;
 }

 /// <summary>
 /// Adds a new patient at the specified index in the list.
 /// </summary>
 /// <remarks>
 /// The following rules apply.
 /// <list type="bullet">
 /// <item>
 /// The actual data of the Patient object is not checked or
 /// changed.
 /// </item>
 /// <item>
 /// The item at the specified <paramref name="index"/> will be
 /// moved one place up.
 /// </item>
 /// </list>
 /// </remarks>
 /// <exception cref="NullReferenceException">
 /// The <paramref name="patient"/> argument was null.
 /// </exception>
 /// <exception cref="IndexOutOfBounds">
 /// The index was invalid.
 /// </exception>
 /// <param name="patient">The patient object to add.</param>
 /// <param name="index">The index to use for inserting.</param>
 /// <returns>
 /// true if the patient was added, false if the list is full.
 /// </returns>
 public bool Add(Patient patient, int index)
 {
 // Code left out for brevity.
 }

 /// <summary>
 /// Searches the contents of the list for patients of a certain gender.
 /// </summary>
 /// <param name="gender">The gender to use during matching.</param>
 /// <returns>
 /// Returns an array of <see cref="Patient"/> objects or null if
 /// no items have been found.
 /// </returns>
 public Patient[] GetPatientsByGender(Gender gender)
 {
 // Code left out for brevity.
 }

XJS155-8301 / 1.3 Coding Standard: C# Page 47 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

 /// <summary>
 /// Gets a value indicating the size of the list.
 /// </summary>
 /// <value>
 /// The current number of entries in the list.
 /// </value>
 public uint Count
 {
 get
 {
 return list.Count;
 }
 }

 /// <summary>
 /// Occurs when a new patient is added to the list.
 /// </summary>
 /// <remarks>
 /// This event typically occurs when <see cref="Add"/> has successfully
 /// added a new patient. The data is passed through an instance of the
 /// <see cref=”PatientAddedEventArgs”/> class.
 /// </remarks>
 public event EventHandler Added;
 }

 /// <summary>
 /// Holds the data associated with the <see cref="Added"/> event.
 /// </summary>
 public class PatientAddedEventArgs : EventArgs
 {
 public PatientAddedEventArgs(Patient newPatient)
 {
 // Code left out for brevity
 }

 /// Remainder of the class left out for brevity...
 }
}

XJS155-8301 / 1.3 Coding Standard: C# Page 48 of 48
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

Appendix B. Index of terms

3rd party code........................... 8

abbreviation.............................14
abstract

base class29
accessibility28

sections43
ApplicationException35, 36
assembly..................................17
attribute.................................... 8

naming..........................12, 15
automatic verification 7

bool ...26

C++..................... 8, 9, 26, 43, 44
callback.............................12, 16
casing

camel ~13
Pascal ~...............................13

cast....................................41, 42
casting.....................................40
catch35
class ..31

base ~............................28, 31
operator overloading28, 31
static only......................28, 29
suffix...................................15

Comment18
const..20
constant

symbolic..............................41
constructor29

private.................................32
private ~........................28, 29

container31
conversion42
copyright18

DbC See Design by Contract
 20
default25
delegate16, 37, 39
Design by Contract30
destructor 21, 23, 24, 34
Dispose23, 24
do loop25
dynamic binding................28, 29

ECMA...................................... 9
else..25
else-if25
ensure......................................30
enum40, 41

containing bit flags15, 40
underlying type40
with flags attribute40

enumeration
bitfield12, 15
naming15

Equals
and exceptions31
method..........................28, 31

evaluation
order of ~26

event16, 37
accessor38
data.....................................38

event handler38
EventArgs38
EventHandler16
exception............... 12, 17, 18, 34

constructor34, 36
custom ~36
from Equals31
recoverable ~.......................36
standard ~s35

exceptions34

false ..26
field

accessibility.........................28
private.................................28

fields
static readonly.....................28

finalizer21
flags ..40
flags attribute40
floating point

== 0....................................41
comparison40, 41

for ...25
for loop25
foreach25
formatting9

GC 21, 23, 24
generated code8
GetHashCode28, 31

Hungarian notation13

IComparable31
identifier

naming13
IDisposable23
if statement25
initialization......................25, 26
initialize..................................20

interface...........28, 31, 32, 37, 39
naming15

invariant 28, 30
is keyword...............................29

Java ..7

line length

maximum ~44
Liskov Substitution Principle ..31
literal value41
logging

of exceptions.......................35
loop

condition.............................25
for ~....................................25
variable...............................25

LSP........See Liskov Substitution

magic numbers.................. 40, 41
member field

prefix 12, 13
method

public virtual30
vs property.................... 28, 32

methods
overloaded 28, 29

msdn................................... 9, 10
MSDN7
multi-threading7

namespace 12, 14
Naming...................................12
naming standard7

obfuscated code16
operator

assignment ~.......................31
overloading................... 28, 31
relational ~31

operator==....................... 28, 31
operators

binary43
unary43
unary ~ and spaces..............43

override...................................37

param18
postcondition 28, 30
precondition...................... 28, 30
prefix

building block ~............ 12, 17
bulding block ~...................17
for event17

preprocessor..............................8

XJS155-8301 / 1.3 Coding Standard: C# Page 49 of 49
 For External Use 2005-05-19

TRAD Philips’ proprietary, © 2003 Philips Electronics N.V. All rights reserved

Principle of Least Surprise29
private43
private virtuals30
property.......................18, 35, 38

enum type40
expensive getter...................32
Message ~35
side-effect............................32
stateless.........................28, 32
vs method......................28, 32
write-only............................32

property-changed...............37, 38
protected................................43
public......................................43

read-only20
recommendation

not following........................ 9
reference field..........................21
reference semantics31
remarks18
require.....................................30
resource management23
return

conditional ~.................25, 26
multiple ~25, 26

returns.....................................18
rule

breaking a ~9

scope

outer21
selection statement 25, 26, 29
shadow

of name...............................21
spaces......................................44
 20
struct.................................28, 31

suffix15
style ..43
suffix.................................12, 16
 18
SuppressFinalize21
switch25, 26
synchronize37
SystemException.....................36

tabs ...44

this.field..................................17
throw 34, 36
true ...26
typeof keyword........................29
type-safety......................... 31, 40

undefined behavior....................8
underlying type

of enum40
underscore 12, 14
unmanaged7
unmanaged resources23
unreachable.............................25
unsafe8

value18
value semantics 28, 31, 32
verification

automatic9

while.......................................25

XML tags................................18

<<< END OF DOCUMENT >>>

