
 

Copyright © 2001,2002, Intalio, Inc 

Java Coding Standard 
 

Arnaud Blandin [blandin@intalio.com] 

 

Contributors 

Assaf Arkin[arkin@intalio.com] 

Keith Visco [kvisco@intalio.com] 

 

Revision: March 15, 2002  



                   Java Coding Standard, 3/26/02 

 

 
2 

 Table of Contents  

Note to the reader....................................................................................................................................4 

1 Introduction and Contents............................................................................................5 

1.1 Introduction ............................................................................................................................5 

1.2 Contents ....................................................................................................................................5 

2 Structure and Documentation.....................................................................................7 

2.1 Packages....................................................................................................................................7 

2.2 Program Files ..........................................................................................................................7 

2.3 Classes and Interfaces .........................................................................................................8 

2.4 Class Variables .....................................................................................................................10 

2.5 Methods ..................................................................................................................................10 

2.6 Local declarations, statements, and expressions...................................................11 

2.7 Layout ......................................................................................................................................12 

2.8 Blank Spaces ..........................................................................................................................14 

2.9 Wrapping Lines ....................................................................................................................16 

3 Naming Conventions ....................................................................................................17 

4 Recommendations..........................................................................................................19 

4.1 Classes......................................................................................................................................19 

4.2 Exception Handling ............................................................................................................20 

4.3 Variables .................................................................................................................................23 

4.4 Methods ..................................................................................................................................25 

4.5 Technical points ..................................................................................................................27 

4.6 Common Sense.....................................................................................................................28 

5 Code Examples .................................................................................................................31 

5.1 Example.java.........................................................................................................................31 

5.2 package.html ........................................................................................................................36 



Java Coding Standard, 3/26/02    

 3 / 39  

6 Related Documents ........................................................................................................39 

 



                   Java Coding Standard, 3/26/02 

 

 
4 

Note to the reader  

 

Before complaining about this document, please read the following: 

Whenever possible, use the conventions from this document; do not reinvent 
them. Keep in mind that projects (whether it is a software project or not) are not 
developed in a vacuum and organizations do not work in a vacuum either.  

A standard is never perfect and can not fit all situations: it is be possible that one 
day you find yourself in a situation where none of these conventions could be 
applied. Thus, you might want to break the conventions to fit your particular 
situation; if you do so, document it.  

If you go against a standard, you must document why you broke it and the 
potential implications of breaking it. 

The bottom line is that you need to understand each standard and understand 
fully when to apply it (and also when not to apply it). 



Java Coding Standard, 3/26/02    

 5 / 39  

1 Introduction and Contents 

1.1 Introduction 

Code conventions are important to programmers for a number of reasons:  

• 80% of the lifetime cost of a piece of software goes to maintenance.  

• Hardly any software is maintained for its whole life by the original author.  

• Code conventions improve the readability of the software, allowing engineers to 
understand new code more quickly and thoroughly.  

• If you ship your source code as a product, you need to make sure it is as well packaged 
and clean as any other product you create.  

1.2 Contents 

 Structure and Documentation  

Standard ways to write and document constructions.  

 Naming conventions  

Standard ways to name identifiers (class names, method names, variable names, etc).  

 Recommendations  

Some rules of thumb that tend to avoid common errors and development obstacles. 
You can use these guidelines to make your own design and coding checklists to be 
used in retrospective code clean-up or when classes need to be used in new contexts or 
placed in reusable libraries.  

But please do not forget to follow the last one. 

 Code Examples 

‘Example.java’ uses the code conventions of this document.   ‘Package.html’ outlines 
the purpose of a package. 

  



                   Java Coding Standard, 3/26/02 

 

 
6 

 Related Documents  

References to other style guidelines etc.  



Java Coding Standard, 3/26/02    

 7 / 39  

2 Structure and Documentation 

2.1 Packages 

Create a new java package for each self-contained project or group of related functionality. 
Create and use directories in accord with java package conventions.  

Consider writing a package.html file in each directory briefly outlining the purpose and 
structure of the package.  

2.2 Program Files 

Place each class in a separate file. This applies even to non-public classes (which are allowed 
by the Java compiler to be placed in the same file as the main class using them) except in the 
case of one-shot usages where the non-public class cannot conceivably be used outside of its 
context.  

Begin each file with a comment including:  

1. The copyright. (see http://intranet.intalio.com/eng/legal.html) 
2. The ‘$Id$’ tag 
3. A history table listing dates, authors, and summaries of changes.  
4. If the file contains more than one class, list the classes, along with a very brief 

description of each.  
5. If the file introduces a principal entry point for a package, briefly describe the 

rationale for constructing the package.  

Immediately follow each file header with:  

• The package name  
• Empty line 
• The import list.  

 

 

 

 



                   Java Coding Standard, 3/26/02 

 

 
8 

Example:  

/** 

 * Copyright (C) 2000, Intalio Inc. 

 * 

 * The program(s) herein may be used and/or copied only with  

 * the written permission of Intalio Inc. or in accordance with   

 * the terms and conditions stipulated in the agreement/contract   

 * under which the program(s) have been supplied. 

 * 

 * $Id: Example.java ,v 1.1 2000/08/03 22:11:13 authorname Exp $ 

 * Date       Author         Changes 

 * Aug 2 2000 author-name    Created   

 * Aug 2 2000 author-name    Added new classes 

 */ 

 

package demo; 

 

import java.util.NoSuchElementException; 

2.3 Classes and Interfaces 

Write all /** ... */ comments using javadoc conventions.  

Preface each class with a /** ... */ comment describing the purpose of the class, 
guaranteed invariants, usage instructions, and/or usage examples. Also include any 
reminders or disclaimers about required or desired improvements. Use HTML format, with 
added tags:  

• @author <a href=”mailto:e-mail address” >author-name </a> 
• @version $Revision $  $Date$ (CVS will expand automatically) 
• @see string  
• @see URL  
• @see classname#methodname  

 



Java Coding Standard, 3/26/02    

 9 / 39  

 

 

 

 

Example:  

/** 

 * A class representing a window on the screen. 

 * For example: 

 * <pre> 

 *  Window win = new Window(parent); 

 * win.show(); 

 * </pre> 

 * 

 *  

 * @author <a href=”mailto:clown@intalio.com”>Bozo the Clown</a> 

 * @version $Revision: 1.4 $ $Date: 2000/02/29 22:11:13 $ 

 * @see  awt.BaseWindow 

 * @see  awt.Button 

 */ 

 

class Window extends BaseWindow { 

 ... 

} 

 

 Declaration order: 

• member variables 

• class constructors 

• public methods 

• protected and private methods 

• inner classes when necessary (see 2.2) 



                   Java Coding Standard, 3/26/02 

 

 
10 

2.4 Class Variables 

First declare public variables, then protected ones , then package level ones and then the 
private ones. 

Use javadoc conventions to describe nature, purpose, constraints, and usage of instances 
variables and static variables. Use HTML format, with added tags:  

• @see string  

• @see URL  
• @see classname#methodname  

Example:  

    /** 

     * The current number of elements. 

     * must be non-negative, and less than or equal to capacity. 

     */ 

    protected int _count; 

2.5 Methods 

Use javadoc conventions to describe nature, purpose, preconditions, effects, algorithmic notes, 
usage instructions, reminders, etc. Use HTML format, with added tags:  

• @param paramName description.  
• @return description of return value  
• @throws exceptionName description (why and when) 
• @see string  
• @see URL  
• @see classname#methodname  

Be as precise as reasonably possible in documenting effects.  



Java Coding Standard, 3/26/02    

 11 / 39  

 

2.6 Local declarations, statements, and expressions 

Use /* ... */ comments to describe algorithmic details, notes, and related documentation 
that spans more than a few code statements.  

You can also use // (see below). 

Do not forget to document why something is being done, not just what. With some time every 
one can figure out what your code is doing but can hardly say why you choose to do that. 

Example:  

    /* 

     * Strategy: 

     *    1. Find the node 

     *    2. Clone it 

     *    3. Ask inserter to add clone  

     *    4. If successful, delete node 

     */ 

Use running // comments to clarify non-obvious code. But don't bother adding such 
comments to obvious code; instead try to make code obvious!  

Example:  

int index = -1; // -1 serves as flag meaning the index isn't valid 

 

Or, often better:  

static final int INVALID = -1;  

int index = INVALID; 



                   Java Coding Standard, 3/26/02 

 

 
12 

2.7 Layout 

• Indentation  

Avoid the ‘Tab’ key; four spaces should be used as the unit of indentation. 

Note: most editors have an option to convert tabs to spaces. 

 

• Line Length 

Lines up to 70 characters are easier to read and print. 

Note: this is only a recommendation, lines can be longer, just don't abuse it.  

So think about it when writing comments. 

 

• Left and Right braces 

At the beginning of classes, the left-brace (‘{‘) could be placed at the beginning of a new 
line or at the end of the naming line.  

For internal code, it should be put at the end of the line. 

 

Right-brace (‘}’) starts a line by itself intended to match its corresponding opening 
statement, except when it is a null statement the ‘}’ should appear immediately after 
the ‘{‘. 

  Try to comment a right-brace that closes a 10-line or more method. 



Java Coding Standard, 3/26/02    

 13 / 39  

 

• Put the ‘extend’ line under the ‘naming’ line if the ‘extend line is too long. 

Examples: 

class Example1 

        extends Class1,Class2,Class3,Class4,Class5 

{ 

    if (condition) { 

             ... 

    } else { 

           ... 

    } 

} //--Example1 

 

 

     

class Example2 extends Class1 { 

         ... 

    if (condition) { 

             ... 

    } else { 

           ... 

    } 

      

     } //--Example2 

 

• A blank line should separate methods. 

• Declare all class variables at the top of the class. 

• Declare all method variables at the top of the method (except for loop initializers or 
local loop variables) 



                   Java Coding Standard, 3/26/02 

 

 
14 

 

2.8 Blank Spaces  

Blank spaces should be used in the following circumstances:  

• A keyword followed by a parenthesis should be separated by a space.  

Example:  

 while (true) { 

           ... 

 } 

Note: a blank space should not be used between a method name and its opening 
parenthesis. This helps to distinguish keywords from method calls.  

• A blank space should appear after commas in parenthesis.  

Example: 

public void foo(int a, int b, string c) { 

    for (expr1; expr2; expr3) { 

        ... 

    } 

} //--foo 



Java Coding Standard, 3/26/02    

 15 / 39  

• All binary operators except ‘.’ should be separated from their operands by spaces. 
Blank spaces should never separate unary operators such as unary minus, increment 
("++"), and decrement ("--") from their operands.  

Examples:  

    a += c + d; 

    a = (a + b) / (c * d); 

     

    while (condition) { 

        n++; 

    } 

    printSize("size is " + foo + "\n"); 

 

• Casts should be followed by a blank space (this is only a recommendation). 

Examples:  

myMethod((byte) aNum, (Object) x); 

 

myMethod((int)aInt, (Object)x); 

 

myMethod((int) (cp + 5), ((int)(i + 3)) + 1); 

 

• Concerning the blank space in the naming line of a method, do as you want: 

Examples: 

public foo(int i, byte b){ 

} 

public foo(int i, byte b) { 

} 

public foo (int i, byte b){ 

} 

public foo (int i, byte b) { 

} 



                   Java Coding Standard, 3/26/02 

 

 
16 

 

2.9 Wrapping Lines 

When an expression does not fit on a single line, break it in order to make your code as 
readable as possible. 

Here are some simple principles you can follow: 

• Break after a comma  

• Break before an operator 

• Prefer high-level breaks to lower-level breaks 

• Align the new line with the beginning of the expression at the same level on the 
previous line. 

Examples: 

SomeMethod(longExpression1,longExpression2, 

           longExpression3, longExpression4,longExpression5); 

  

var = someMethod1(longExpression1, 

                  someMethod2(longExpression2, 

                              longExpression3));  

 

Following are two examples of breaking an arithmetic expression. The first is preferred, since 
the break occurs outside the parenthesized expression, which is at a higher level.  

 

longName1 = longName2 * (longName3 + longName4 - longName5) 

           + 4 * longname6; // PREFER 

 

longName1 = longName2 * (longName3 + longName4 

                       - longName5) + 4 * longname6; //AVOID  



Java Coding Standard, 3/26/02    

 17 / 39  

3 Naming Conventions 

 

packages  

lowercase  
Consider using the recommended domain-based conventions described in the Java 
Language Specification, page 107 as prefixes.   

 

files  

The java compiler enforces the convention that file names have the same base name 
as the public class they define.  

classes  

CapitalizedWithInternalWordsAlsoCapitalized  

 

class (When necessary to distinguish from similarly named interfaces):  

ClassNameEndsWithImpl OR ClassNameEndsWithObject  

 

exception class  

ClassNameEndsWithException.  

 

constants (finals)  

UPPERCASE_WITH_UNDERSCORE_IF_MORE_THAN_ONE_WORD  

 

private or protected 

_firstWordLowerCaseWithUnderscoreAndInternalWordsCapitalized  



                   Java Coding Standard, 3/26/02 

 

 
18 

 

local variables 

firstWordLowerCaseButInternalWordsCapitalized  

 

methods 

firstWordLowerCaseButInternalWordsCapitalized()  

 

factory method for objects of type X: 

newX  OR createX 

 

converter method that returns objects of type X 

toX  

 

method that reports an attribute x of type X  

X getX()  

 

method that changes an attribute x of type X  

void setX(X value)  



Java Coding Standard, 3/26/02    

 19 / 39  

4 Recommendations 

4.1 Classes 

 

• When sensible, consider writing a main for the principal class in each program file. The 
main should provide a simple unit test or demo.  

Rationale: Forms a basis for testing. Also provides usage examples.  

• For self-standing application programs, the class with main should be separate from 
those containing normal classes.  

Rationale: Hard-wiring an application program in one of its component class files 
hinders reuse.  

• Consider writing source code templates for the most common kinds of class files you 
create: Applets, library classes, application classes.  

Rationale: Simplifies conformance to coding standards.  

• If you can conceive of someone else implementing a class's functionality differently, 
define an interface, not an abstract class. Generally, use abstract classes only when 
they are ``partially abstract''; i.e., they implement some functionality that must be 
shared across all subclasses.  

Rationale: Interfaces are more flexible than abstract classes. They support multiple 
inheritances and can be used as `mixins' in otherwise unrelated classes.  

• Consider whether any class should implement Cloneable and/or Serializable.  

Rationale: These are ``magic'' interfaces in Java, that automatically add possibly-
needed functionality only if so requested.  

 

• Declare a class as final only if it is a subclass or implementation of a class or interface 
declaring all  of its non-implementation-specific methods. (And similarly for final 
methods).  

Rationale: Making a class final means that no one ever has a chance to reimplement 
functionality. Defining it instead to be a subclass of a base that is not final means that 
someone at least gets a chance to subclass the base with an alternate implementation. 
Which will essentially always happen in the long run.  



                   Java Coding Standard, 3/26/02 

 

 
20 

• Whenever reasonable, define a default (no-argument) constructor so objects can be 
created via Class.newInstance().  

Rationale: This allows classes of types unknown at compile time to be dynamically 
loaded and instantiated (as is done for example when loading unknown Applets from 
html pages).  

4.2 Exception Handling 

This section lists items concerning exception handling, a powerful mechanism of 
the Java language that is often neglected by developers. Please pay attention to 
this section and be sure to respect these conventions. 

• Always handle the catch block when handling exception, by at least logging a  
message or the stack trace. 

Rationale: It is far from being enough to just document the catch block with 
sentences like: 

“this should not happen.” 

“never here.” 

You can never be 100% confident about the execution of a code. For instance, you don’t 
know on which platform it will be run and with which JVM implementation. You can’t 
predict the behavior of your code in all the cases. Thus to prevent tedious debugging or 
unexpected behavior, always log a message in the catch block and this is a minimum 
effort. 

try { 

   _service.connect(); 

} catch (ConnectionException ce) { 

    //This is unexpected but since 

    //I read the coding standard and I understand 

    //its benefits, I’ll log a message 

    _logger.log(ce.printStackTrace()); 

} 



Java Coding Standard, 3/26/02    

 21 / 39  

• Don’t use generic  exceptions , always try to as precise as possible when catching an 
exception 

Rationale: Being precise will help you to master your code and to know exactly what 
you are doing. For instance, the following exception handling code reflects the work of 
a developer that is not very confident (or worst that is lazy ☺) 

try{ 

   _file = new File(name); 

   if (_file.exists()) { 

       db.store(_file); 

    }    

    printReport();    

} catch(Exception e) { 

    e.printStackTrace(); 

} 

A good exception handling should look like: 

try{ 

   _file = new File(name); 

   if (_file.exists()) { 

       db.store(_file); 

    }    

    printReport();    

} catch(IOException ie) { 

    String message = MessageService.message(FILE_NOT_FOUND, name); 

    throw new StoringException(ie, message); 

} catch (JDOException je) { 

    String message = MessageService.message(DB_ERROR); 

    throw new StoringException(je, message); 

} catch (ReportException re) { 

    _logger.log(re.getMessage()); 

} 

 



                   Java Coding Standard, 3/26/02 

 

 
22 

• A constructor or method must explicitly declare all unchecked  (i.e. runtime) exceptions 
it expects to throw. The caller can use this documentation to provide the proper 
arguments. 

Rationale: Constructors and methods may place restrictions on arguments passed to 
them or the order in which they are being called in order to preserve consistency (often 
they call throw IllegalArgumentException). Documentation allows the caller to avoid 
runtime exceptions. 

• Do not use unchecked exceptions instead of code that checks for an exceptional 
condition. 

Rationale: Comparing an index with the length of an array is faster to execute and 
better documented than catching ArrayOutOfBoundsException. 



Java Coding Standard, 3/26/02    

 23 / 39  

 

4.3 Variables 

 

• Never declare instance variables as public(that does not include constant variables 
(final static)).  

Rationale: The standard OO reasons. Making variables public gives up control over 
internal class structure. Also, methods cannot assume that variables have valid values.  

• Minimize reliance on implicit initializers for instance variables (such as the fact that 
reference variables are initialized to null).  

Rationale: Minimizes initialization errors.  

• Minimize statics (except for static final constants).  

Rationale: Static variables act like globals in non-OO languages. They make methods 
more context-dependent, hide possible side-effects, sometimes present synchronized 
access problems. and are the source of fragile, non-extensible constructions. Also, 
neither static variables nor methods are overridable in any useful sense in subclasses.  

 

• Generally prefer double to float and  use int for compatibility with standard Java 
constructs and classes (for the major example, array indexing, and all of the things this 
implies, for example about maximum sizes of arrays, etc).  

Rationale: fewer precision problems occur with doubles than floats. On the other 
hand, because of limitations in Java atomicity guarantees, use of 
double(respectively int) must be synchronized in cases where use of 
floats(long) sometimes would not be.  

• Use final and/or comment conventions to indicate whether instance variables that 
never have their values changed after construction are intended to be constant 
(immutable) for the lifetime of the object (versus those that just so happen not to get 
assigned in a class, but could in a subclass).  

Rationale: Access to immutable instance variables generally does not require any 
synchronization control, but others generally do.  



                   Java Coding Standard, 3/26/02 

 

 
24 

 

• Avoid unnecessary instance variable access and update methods. Write get/set-style 
methods only when they are intrinsic aspects of functionality. Always write these 
methods when coding an interface.  

Rationale: Most instance variables in most classes must maintain values that are 
dependent on those of other instance variables. Allowing them to be read or written in 
isolation makes it harder to ensure that consistent sets of values are always used.  

• Minimize direct internal access to instance variables inside methods. Use protected 
access and update methods instead (or sometimes public ones if they exist anyway).  

Rationale: While inconvenient and sometimes overkill, this allows you to vary 
synchronization and notification policies associated with variable access and change 
in the class and/or its subclasses, which is otherwise a serious impediment to 
extensibility in concurrent OO programming. (Note: The naming conventions for 
instance variables serve as an annoying reminder of such issues.)  

• Avoid giving a variable the same name as one in a superclass.  

Rationale: This is usually an error. If not, explain the intent.  

• Declare a very local variable (such as loop variable or array index) only at that point in 
the code where you know what its initial value should be.  

Rationale: Minimizes bad assumptions about values of variables.  

• Declare and initialize a new local variable rather than reusing (reassigning) an existing 
one whose value happens to no longer be used at that program point.  

Rationale: Minimizes bad assumptions about values of variables.  

• Assign null to any reference variable that is no longer being used. (This includes, 
especially, elements of arrays.)  

Rationale: Enables garbage collection.  



Java Coding Standard, 3/26/02    

 25 / 39  

 

4.4 Methods 

• Avoid cascading method calls 

Rationale: While convenient, the resulting method cascades 
(a.meth1().meth2().meth3()) can be the sources of synchronization problems and 
other failed expectations about the states of target objects.  

• Avoid overloading methods on argument type. (Overriding on arity is OK, as in having 
a one-argument version versus a two-argument version). If you need to specialize 
behavior according to the class of an argument, consider instead choosing a general 
type for the nominal argument type (often Object) and using conditionals checking 
instanceof. Alternatives include techniques such as double-dispatching, or often best, 
reformulating methods (and/or those of their arguments) to remove dependence on 
exact argument type.  However if overload is still convenient, just give the type in the 
function argument 

 

Example 

 bind(object) 

 bindInt(int) 

 bindString(string) 

Rationale: Java method resolution is static; based on the listed types, not the actual 
types of argument. This is compounded in the case of non-Object types with coercion 
charts. In both cases, most programmers have not committed the matching rules to 
memory. The results can be counterintuitive; thus the source of subtle errors. For 
example, try to predict the output of this. Then compile and run.  

 

class Classifier{ 

    String identify(Object x) { return "object"; } 

    String identify(Integer x) { return "integer"; } 

 

} //--class Classifier 

 

class Relay { 

   



                   Java Coding Standard, 3/26/02 

 

 
26 

    String relay(Object obj) {  

        return (new Classifier()).identify(obj); 

    }  

   

} //--class Relay 

 

 

public class App{ 

  

    public static void main(String[] args) { 

        Relay relayer = new Relay(); 

        Integer i = new Integer(17); 

        System.out.println(relayer.relay(i)); 

    } 

 

} //--class App 

      

 

• Declare when your class or method is thread-safe.  

Rationale: it helps you to master what you are coding. 

 

• Prefer synchronized methods to synchronized blocks.  

Rationale: Better encapsulation; less prone to subclassing snags; can be more efficient.  

• Always document the fact that a method invokes wait  

Rationale: Clients may need to take special actions to avoid nested monitor calls. 

• Prefer abstract methods in base classes to those with default no-op implementations. 
(Also, if there is a common default implementation, consider instead writing it as a 
protected method so that subclass authors can just write a one-line implementation 
to call the default.)  

Rationale: The Java compiler will force subclass authors to implement abstract 
methods, avoiding problems occurring when they forget to do so but should have.  



Java Coding Standard, 3/26/02    

 27 / 39  

4.5 Technical points 

 

• If you override Object.equals, also override Object.hashCode, and vice-versa.  

Rationale: Essentially all containers and other utilities that group or compare objects 
in ways depending on equality rely on hashcodes to indicate possible equality.  

• Override readObject and writeObject if a Serializable class relies on any state that 
could differ across processes, including, in particular, hashCodes and transient fields.  

Rationale: Otherwise, objects of the class will not transport properly.  

• If you think that clone() may be called in a class you write, then explicitly define it 
(and declare the class as implements Cloneable).  

Rationale: The default shallow-copy version of clone might not do what you want.  

• Always use method equals instead of operator == when comparing objects. In 
particular, do not use == to compare Strings (unless comparing memory locations)  

Rationale: If someone defined an equals method to compare objects, then they want 
you to use it. Otherwise, the default implementation of Object.equals is just to use 
==.  

• Always embed wait statements in while loops that re-wait if the condition being 
waited for does not hold.  

Rationale: When a wait wakes up, it does not know if the condition it is waiting for is 
true or not.  

• Use notifyAll instead of notify or resume when you do not know exactly the number 
of threads which are waiting for something.  

Rationale: Classes that use only notify can normally only support at most one kind of 
wait condition across all methods in the class and all possible subclasses. And 
unguarded suspends/resumes are even more fragile.  



                   Java Coding Standard, 3/26/02 

 

 
28 

 

• Embed casts in conditionals. For example:  

        C cx = null; 

        if (x instanceof C) cx = (C) x; 

        else evasiveAction(); 

    

Rationale: This forces you to consider what to do if the object is not an instance of the 
intended class rather than just generating a ClassCastException.  

• When throwing an exception, do not  refer to the name of the method which has 
thrown it but specify instead some explanatory text 

Rationale: the name of the method could be given by the stack trace and good 
exception messages are always useful. 

• Document fragile constructions used solely for the sake of optimization.  

Rationale: See Jonathan Hardwick's Java Optimization pages (see Chapter 6).  

 

4.6 Common Sense 

 

• Always avoid assignments (“=”) inside if and while conditions.  

Rationale: There are almost always typos. The java compiler catches cases where (“=”) 
should have been (“==”) except when the variable is a boolean.  

• Document cases where the return value of a called method is ignored.  

Rationale: These are typically errors. If it is by intention, make the intent clear. A 
simple way to do this is:  

int unused = obj.methodReturningInt(args); 

• Minimize * forms of import. Be precise about what you are importing. Check that all 
declared imports are actually used.  

Rationale: Otherwise readers of your code will have a hard time understanding its 
context and dependencies. 



Java Coding Standard, 3/26/02    

 29 / 39  

 

• Prefer declaring arrays as Type[] arrayName rather than Type arrayName[].  

Rationale: The second form is just for incorrigible C programmers.  

• Ensure that non-private static variables have sensible values even if no instances are 
ever created. (Similarly ensure that static methods can be executed sensibly.) Use 
static intitializers (static { ... } ) if necessary.  

Rationale: You cannot assume that non-private statics will be accessed only after 



                   Java Coding Standard, 3/26/02 

 

 
30 

 

And above all, 

 

• Do not require 100% conformance to rules of thumb such as the ones listed here!  

Rationale: Java allows you program in ways that do not conform to these rules for 
good reason. Sometimes they provide the only reasonable ways to implement things. 
And some of these rules make programs less efficient than they might otherwise be, so 
are meant to be conscientiously broken when performance is an issue.  



Java Coding Standard, 3/26/02    

 31 / 39  

5 Code Examples 

5.1 Example.java 

 

/** 

 * Copyright 2000 © Intalio Inc. All Rights Reserved 

 * $Id: Example.java ,v 1.1 2000/08/03 22:11:13 authorname Exp $ 

 * File: Example.java 

 * Date       Author         Changes 

 * Aug 2 2000 author-name    Created   

 * Aug 2 2000 author-name    Added new classes 

 */ 

 

package com.intalio.n3.xml; 

 

import java.io.Serializable; 

import java.net.URL; 

import java.net.MalformedURLException; 

 

 

/** 

 *Hold the URI reference and reference the base URI  

 *or the namespace in which the URI is defined. It  

 *allows URI references to be passed between application  

 *components as well as encoded into XML documents. 

 * 

 *@author <a href=e-mail address> author name </a> 

 *@version $Revision$ 

 *@see URNNamespace 

 */ 

 

public class URIReference implements Serializable{ 



                   Java Coding Standard, 3/26/02 

 

 
32 

 

    /** 

     * Holds the identifier for this URI 

     */ 

    private String _identifier; 

 

 

    /** 

     * the URI reference to which this reference is relative 

     */ 

    private URIReference _baseURI; 

 

 

    /** 

     * The URNNamespace for this URI 

     * 

     *@see URNNamespace 

     */ 

    private URNNamespace _namespace; 

 

    /** 

     * Constructs a new URI reference from the given URL 

     * 

     * @param url The URL 

     */ 

    public URIReference(String url) { 

        _identifier = url; 

    } 

 

  

    /** 

     * Returns the resource identifier as a string. The return 

     * Is either the URL (absolute or relative) or the URN    



Java Coding Standard, 3/26/02    

 33 / 39  

     * identifier (namespace specific string).  

     * 

     * @return The resource identifier as a string 

     */ 

    public String getIdentifier() {  

        return _identifier; 

    } 

 

    /** 

     * Returns true if both URI references are equal. 
     * Two URI references are equals if they have the same 
     * identifier, the base URI is null or equal, and the 
     * URN namespace is null or equal 

     */ 

    public boolean equals(Object other) { 

        ... 

      

        while (condition) { 

            ... 

        } 

 

        do { 

            ... 

        } while (condition); 

 

    } //equals 

 

 

 

    public int hashCode() { 

        ... 

        switch (condition) { 

 

             case ABC: 

                 if (condition) { 



                   Java Coding Standard, 3/26/02 

 

 
34 

                     ... 

                 } else { 

                     ... 

                 } 

                 break; 

 

             case DEF: 

                 for (initialization; condition; update) { 

                       statements; 

                   } 

                 break; 

 

             case XYZ: 

                 { 

                     ... 

                 } 

                 break; 

 

             default: 

                 statements; 

                 break; 

        } //switch 

 

        try { 

            statements; 

        } catch (ExceptionClass e) { 

            statements; 

        } finally { 

            statements; 

        } 

 

    }//hashCode 

 



Java Coding Standard, 3/26/02    

 35 / 39  

}//-- Example 

  



                   Java Coding Standard, 3/26/02 

 

 
36 

5.2 package.html 
<html> 

 

  <body> 

 

    <p><b>The Java Data Objects API</b></p> 

    <dl> 

      <dt><b>Version: </b></dt> 

<dd>$Revision: 1.7 $ $Date: 2000/05/13 00:45:01 $</dd> 

      <dt><b>Author:</b></dt>      

          <dd><ahref="mailto:arkin@exoffice.com">Assaf 
Arkin</a></dd> 

    </dl> 

 

<p>The class {@link org.exolab.castor.jdo.JDO} provides the Castor 
JDO engine used for obtaining database connection. A JDO object is 
constructed with the name of a database and other properties, and 
<tt>getDatabase}</tt> is used to obtain a new database 
connection.</p> 

 

<p>The class {@link org.exolab.castor.jdo.Database} represents an 
open connection to the database that can be used to perform 
transactional operations on the database.</p> 

 

<p>Database operations can only be performed in the context of a 
transaction. Client  applications should begin and commit a 
transaction  using the <tt>begin</tt> and <tt>commit</tt> methods. 
Server applications should use implicit transaction demarcation by 
the container or explicit transaction demarcation using 
<tt>javax.transaction.UserTransaction</tt>.</p> 

 

<p>All objects queried and created during a transaction are 
persistent. Changes to persistent objects will be stored in the 
database when the   

transaction commits. Changes will not be stored if the transaction 
is rolled back or fails to commit.</p> 



Java Coding Standard, 3/26/02    

 37 / 39  

 

<p>The class {@link org.exolab.castor.jdo.OQLQuery} is obtained from 
the database and used to construct and execute a query on that 
database. All query operations are bound to the database 
transaction.</p> 

 

<p>The following example opens a connection to the database 'mydb' 
configured from the configuration file ‘<tt>database.xml</tt>', 
retrieves all the products in the specified groups and marks them 
down with a 25% discount and on-sale status.</p> 

 

 <pre> 

  JDO          jdo; 

  Database     db; 

  Query        oql; 

  QueryResults results; 

 

<font color="red">// Define a new database source</font> 

jdo = new JDO( "mydb" ); 

jdo.setConfiguration( "database.xml" ); 

 

<font color="red">// Open a new database, begin a transaction</font> 

db = jdo.getDatabase(); 

db.begin(); 

 

<font color="red">// Select all the products in a given group</font> 

oql = db.getQuery( "SELECT p FROM Product p WHERE group=$" ); 

oql.bind( groupId ); 

results = oql.execute(); 

while ( results.hasMore() ) { 

<font color="red">// A 25% mark down for each    product and mark as 
sale</font> 

  prod = (Product) results.next(); 

  prod.markDown( 0.25 ); 

  prod.setOnSale( true ); 



                   Java Coding Standard, 3/26/02 

 

 
38 

     } 

<font color="red">// Commit all changes, close the database</font> 

db.commit(); 

db.close(); 

 </pre></p> 

 <p>If you have read all that, you deserve a break, go drink a 
beer</p> 

  </body> 

</html> 



Java Coding Standard, 3/26/02    

 39 / 39  

6 Related Documents 

For some others standards and style guides, see: 

• The JavaDoc Conventions:  

http://java.sun.com/products/jdk/javadoc/writingdoccomments/index.html 

• Javasoft Coding Standard (the present document uses some sections of it)  

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html 

• joodcs standards, with links to a Coding Standards Repository for various languages.  

http://www.meurrens.org/ip-Links/java/joodcs/ 

• Doug Lea’s Java Coding Standard (the base of this document) 

http://gee.cs.oswego.edu/dl/html/javaCodingStd.html 

• The AmbySoft Inc. Coding Standard for Java 

http://www.ambysoft.com/javaCodingStandards.pdfJonathan  

• Hardwick's Java Optimization pages  

http://www.cs.cmu.edu/~jch/java/optimization.html 

• Ten Java maxims From Bruce Eckel 

http://www.java-zone.com/free/articles/top10/ 

 


