

Atacama
Large
Millimeter
Array

ALMA-SW-0010

Revision: 5

2001-08-10

Software
Standard

Alan Bridger

C++ Coding Standards

Software Standard

Alan Bridger

UK Astronomy Technology Centre
Jim Pisano

National Radio Astronomy Observatory

Released by: Signature:

Institute: Date:

Keywords: programming standards, C++, language

Approved by: Brian Glendenning, Gianni Raffi Signature:

Institute: NRAO, ESO Date:

Author Signature: Date:

ALMA C++ Coding Standards

Revision: 5 Page 2

Change Record

DATE AUTHOR SECTIONS/PAGES AFFECTED REVISION
REMARKS

2000-10-16 Alan Bridger All 1
Reformatted, tidied, minor changes, DOC++ added (from JP original)
2000-10-30 Alan Bridger Section 6, appendix I 2
Up to date version of DOC++ used.
2001-02-28 Alan Bridger All 3
Responded to review comments, assigned doc. #.
2001-06-11 Alan Bridger 4
Namespace naming, exception guideline, copyright/license mods.
2001-08-8 Michele Zamparelli 5
substituted DOC++ with doxygen

ALMA C++ Coding Standards

Revision: 5 Page 3

Table of Contents

1 C++ Coding Standards.. 4

1.1 Scope.. 4
1.2 Introduction ... 4

2 Class Declarations... 4

2.1 Organization .. 5
2.2 Contents and Structure ... 5

3 Naming Conventions... 6

3.1 Class Names... 6
3.2 Namespaces ... 6
3.3 Function Names.. 7
3.4 Variable Names... 7
3.5 Other Names... 8
3.6 File Names.. 8

4 Code Commenting... 9

4.1 Header Files..10
4.2 Source Files ..10

5 Object Implementation Guidelines...11

5.1 Structure..11
5.2 Robustness...12
5.3 Code Style...13
5.4 Organization ..13
5.5 Debugging ...14

6 Doxygen Use..14

7 References..15

Appendix A. DoxygenExample ...15

Appendix B. Example HTML Output ...19

ALMA C++ Coding Standards

Revision: 5 Page 4

1 C++ Coding Standards

1.1 Scope

This document describes the C++ coding guidelines agreed upon by the software
engineering team. These guidelines are expected to be adhered to in all future C++
software development. Existing code will not be required to be rewritten to adhere to
these guidelines, but it is suggested that reasonable efforts are made to adhere to the new
guidelines when working on existing code.

1.2 Introduction

This document was written with the following goals in mind:

1. Code should be robust and error free.

2. Code should be easy to use and understand.

3. Code should be easy to maintain.

Each section of this document contains recommended standards in that area, along with
a further list of guidelines. A standard is required to be followed in all future
development. If a programmer must violate a standard, then the reason for doing so
must be strong and clearly documented via code comments. Guidelines are just that.
Individual programmers are encouraged to program in a style which is consistent with the
rest of the programming team, but differing code styles are acceptable.

These standards recognize that individual programmers have the right to make judgments
about how best to achieve the goal of code clarity. When working on others’ code, please
respect and continue existing styles which, although they may differ from your own, meet
these guidelines. This in turn leads to what is perhaps the most important aspect of
coding style: consistency. Try, as much as possible, to use the same rules throughout the
entire program or module.

2 Class Declarations

Standards

• Robust, error-free, easy to use, understand, and maintain class declarations are
the single most critical element of programming style, see [5], item 18.

• Class declarations should be platform invariant to the greatest extent possible.
Any compiler conditional directives should be minimal and documented.

• Use include guards in header files to prevent multiple inclusion.

• Within each section, member functions and member data should not be
interspersed.

ALMA C++ Coding Standards

Revision: 5 Page 5

• The default constructor, copy constructor, assignment operator, and destructor
should be either explicitly declared or made inaccessible and undefined rather
than relying on the compiler-generated defaults. See [5], item 27.

2.1 Organization

Guidelines

- There should be at most one public, one protected and one private section in
the class declaration. They should be ordered so that the public section comes
first, then the protected section, and lastly the private section.

- Member functions and data should be listed logically. For example, all
constructors should be grouped together, all event handling routines may be
declared together, as may the routines which access member data. Each logical
group of functions should have a common comment above the group explaining
why they are grouped together.

- In general there will be one class declaration per header file. In some cases,
smaller related classes may be grouped into one header file.

2.2 Contents and Structure

Standards

• Class data members must always be private. If access to them is required then
this must be provided through public or protected member functions. See [5],
item 20.

• Use const whenever possible for function, reference and pointer parameters,
and data member declarations, except where non-constness is required. Use the
mutable keyword to as needed for data which is logically but not physically
const (for example, read buffers implemented for efficiency).

• A class’s declaration must expose the logical usage of the class, and protect or
hide its implementation details. The capacity to make the greatest degree of
enhancement and modification with the least change to class declaration is highly
desirable for effective maintenance, especially for class interfaces exposed in
shared libraries.

Guidelines:

- Forward declarations should be employed when safely applicable to minimize
#include dependencies and reduce compilation time. Forward declarations may
be applied to avoid including declarations of objects that are used solely by
pointer/reference or as function return values; they may not be used if the object
serves as a base class, or as a non-pointer/reference class member or parameter.
See [5], item 34.

- Implementation details of complex class declarations should be moved to the
class definition to reduce #include dependencies and to enhance the ability to
modify class implementation without changing the class declaration.

ALMA C++ Coding Standards

Revision: 5 Page 6

- Organize class member functions in your source code in the same order they are
declared in the class interface.

- For classes requiring a significant amount of source code in their implementation,
identify member function groupings by their accessibility scope (i.e. “public
member functions”, “private member functions”, “static member functions”,
etc.).

3 Naming Conventions

Standards

• Clear and informative names are one of the best tools for creating easily
understandable code. The name of any identifier should succinctly describe the
purpose of that identifier.

• Avoid abstract names (in a global context) that are likely to be reused by other
parts of the system.

Guidelines

- It is recommended that names be a mixture of upper and lowercase letters to
delineate individual words or separated by underscores . Use descriptive names
and avoid abbreviations except where the abbreviation is an industry or project
standard.

- See [5], § 9 for a more detailed set of guidelines.

3.1 Class Names

Standards

• Class names must identify the type of the object they represent. (e.g. “Message”
or “OutputDevice”).

Guidelines

- Class names will consist of nouns or noun combinations. Derived class names
should be suffixed by base class names (e.g. “ClockOutputDevice” or
“EditorCWin”).

- The capitalization rule for class names should be all words in the name
capitalized, e.g. “ClassName”.

3.2 Namespaces

Standards

• Namespace names must be related to the domain they delimit.

ALMA C++ Coding Standards

Revision: 5 Page 7

• Namespace names must identify the namespace uniquely.

Guidelines

- The capitalization rule for Namespace names should be all words in the name
capitalized, e.g. “MySpace”. No underscores are allowed.

3.3 Function Names

Standards

• Function names must identify the ac tion performed or the information provided
by the function.

Guidelines

- Function names will generally begin with a verb.

- The capitalization rule for function names should be all words in the name
capitalized, except for the first, e.g. “functionName”.

3.4 Variable Names

Standards

• The type and purpose of each variable should be evident within the code in which
it is used. E.g. the reader will expect counter to be an int, motorSet might
be a BOOLEAN or an array representing a set – context will usually clarify this.
And while the type of sessionId might not be obvious it will be expected to
be an identifier or handle that labels some sort of session. Class member data
must be easily distinguishable from local data in a consistent manner.

• Names should be formed from composite words, delimited by upper case letters,
with no underscores allowed (except for appending pointer identifiers etc.)
Underscores should be used as delimiters in macro names.

Guidelines

- Variable names should be short, but meaningful.

- Local variables should be named with the content of the variable. Each word
except the first one is capitalised. For example, counter and sessionId are
acceptable variable names.

- Global variables should be similarly named except that each word is capitalised.
For example, ExposureTime is acceptable.

- Pointer variables should be identified, preferably by appending “_p”, for
example:

ALMA C++ Coding Standards

Revision: 5 Page 8

struct s * meaningfulName_p

- Identify class member variables by appending "_m", where “m” stands for
“member.” Valid member variable names would include “fileName_m” and
“recordCount_m”.

- The capitalization rule for variable names should be all words in the name
capitalized except for the first, e.g. “variableName”.

3.5 Other Names

Standard

• Macros, enumeration constants and global constant and typedef names should be
stylistically distinguished from class, function, and variable names.

• Types (struct types, etc.) should be given meaningful names and begin with an
uppercase letter in order to distinguish them from variables.

Guideline

- Macros, enumeration constants and global constant and global typedef names
should be in all uppercase with individual words separated by underscores, e.g.
DATA_VALID, const int MIN_WIDTH = 1;

3.6 File Names

Standards

• Header file names should have the extension “.h”.

• C++ Implementation (source) file names should have the extension “.cpp”.

• File names should contain only alphanumeric characters, “_” (underscore), “+”
(plus sign), “-“ (minus sign), or “.” (period). Meta-characters and spaces must be
avoided. Also file names that only vary by case are not permitted.

• When used with the ESO CMM filenames should contain the module name as a
prefix.

Guideline

− In general, file names should declare the contained class name.

ALMA C++ Coding Standards

Revision: 5 Page 9

4 Code Commenting

Standards

• All files, both header and source, must begin with the standard header
information, which contains the file identification information, a one line
description of the class, and the copyright notice. See the example header files in
Appendix A. Different copyright statements may be required for different sites.

• The header may also contain a longer description of the purpose of the class and
any other pertinent information about the class.

• A change log for each module must be maintained in a manner appropriate to the
development environment. Exactly how this is done is still to be determined by
the development environment chosen.

• Comments intended for documentation should use the doxygen style. A template
for the ALMA project may be found in Appendix A.

• Block style and in-line comments are both acceptable.

• Block style comments should be preceded by an empty line and have the same
indentation as the section of code to which they refer. Block style comments
should appear at the beginning of the relevant segment of code. C++ style
comments ("//") are preferred.

Block Style:

//
//
//
//
//

• Brief comments on the same line as the statement that they describe are
appropriate for the in-line commenting style. There should be at least 4 spaces
between the code and the start of the comment.

In-Line Comments:

 //
 //
 //

• Use in-line comments to document variable usage and other small comments.
Block style comments are preferable for describing computation processes and
program flow.

Guidelines

ALMA C++ Coding Standards

Revision: 5 Page 10

− Use the Id RCS identifier for all RCS-based source-code control tools. The
Id identifier expands to $Id: filename revision date time author state $.
When used with ESO's CMM the identifier must be preceded by @(#).

− Use a “ToDo” section in the header comments to indicate those items that remain
to be done.

4.1 Header Files

The primary goal of interface comments is to define the class and its members at a level
appropriate for a new user of the class. Interface comments should be as concise as
possible to meet this goal.

Standards

• Documentation comments will allow for doxygen extraction to provide a general
understanding of the class and its interface. See Section 6.

• Interface commenting must be complete and up-to-date at all times during a
class’ lifetime.

• Each member data element must be described.

• Each member function must be described. In addition to specifying what the
function does, this description must include:

a) For copy constructors and assignment operators, whether or not copy or
reference semantics are used.

b) What the parameters are, how they are used, and any preconditions that must
be established for the parameters. A variable name, in addition to its type,
must be used to identify the parameter’s purpose.

c) What the function is going to do to the parameters and to the object itself.

d) What the results/return values are in all the different cases possible for the
function.

e) What exceptions the function might throw.

Guideline

- The preferred format for member data element comments is doxygen style
comments (///) above at the same indentation level of the code that is being
discussed. C++ style comments (//) may be used when documentation is not
required.

4.2 Source Files

Standards

• All comments in source code files must be up-to-date at all times during that
code's lifetime.

ALMA C++ Coding Standards

Revision: 5 Page 11

• Code comments should be used to give an English language synopsis of a section
of code, to outline steps of an algorithm, or to clarify a piece of code when it is
not immediately obvious what was done or why it was done. In no case should
the code comments just parrot the code.

Guidelines

- Code comments which apply to a block of code (either a loop or branch
construct, or a grouping of statements), should be immediately above the block
and indented to the same level as the code.

- Code comments which apply to a single statement may be immediately above or
to the right of the statement. If above the statement, the comment should be
indented to the same level as the code. If to the right of the statement, sufficient
white space should be used to separate the comment from the code.

- Use a line of dashes ‘—‘ to visually block off member function definitions in the
source file. This allows easy identification of where the functions start.

5 Object Implementation Guidelines

This section provides some basic implementation guidelines for C++. It does not provide
a complete nor exhaustive list of guidelines that ensure correct C++ usage. There are
many excellent references which can provide this information some of which are listed in
section 7 ([3] and [5]), Meyer’s book is especially insightful.

5.1 Structure

Standards

• In general, hide the implementation details from the interface. This encompasses
issues including data member accessibility (avoid public), implementation of
assignment operators and copy constructors, and judicious use of inheritance and
virtual functions. See [5] items 20, 11-17, and 35-43.

• Minimize the use of the global name space.

• For software intended for workstations make use of namespaces to partition the
global name space. For software intended for LCUs (and for common software
that can be used on LCUs or workstations) namespace support cannot be
guaranteed and so namespaces should not be used.

• When namespaces are not used, structs can be used to break up the global name
space. Global scope functions, data, and even types should be kept to a
minimum, and these identifiers linked to the most logically-related class.
Functions used within a class should be member functions of that class rather
than hidden global scope functions. Enumerated types used specifically for one
class should be declared within that class. See [5], items 28, 32 and 47. Also of
note is a macro definition in ACE that simulates namespaces.

Guidelines

ALMA C++ Coding Standards

Revision: 5 Page 12

- Global static objects should be avoided. If they are used, care should be used
when declaring global static objects as they cause initialization ordering
problems and cause problems in a multi-threaded environment. An instantiator
class which counts references to an object should be implemented. See [4], topic
4.04 or [5], item 47.

- Project-wide header files which declare, include and define everything useful and
shared for an entire project simplifies the project organization. This process must
be somewhat controlled as it can lead to large includes and slow the build process
dramatically. As the project matures, this project-wide header can be pared down
with forward declarations replacing include files.

- If used, exceptions should be specified in the signature of the class method
declaration and definition. This should include any exceptions that might be
thrown directly or indirectly by the method.

- Create your own exception heirarchies reflecting the domain and define relevant
exception classes derived from the standard exception class. See [10]. E.g.

class OutputDeviceException : public exception {..};
class OutputDevice : public Device
{
 .
 .
 .
};

- Users of ACE TAO on vxWorks may still be constrained to using the ACE
exception emulation and should follow the ACE guidelines.

5.2 Robustness

Function definitions must -- to the fullest extent possible -- trap invalid or undefined use
of the class.

Standards

• Declare const variables instead of using #defines for simple constants. The
compiler will provide a level of type checking when the constants are used.

• Initialize all member data and local variables. All pointers should be initialized
to appropriate values or NULL.

• Use ASSERT()’s or comparable debugging macros liberally to trap potential
programming errors (in your class’ code or in the calling function’s code).
Validate all parameters passed to any public, protected, or even
private function. Verify all assumptions about the environment in which each
function is called. Verify intermediate values calculated by your algorithms.

• Handle all potentially-invalid parameters or environmental conditions in a
graceful, consistent, and documented manner. Remember that the final version
of your class should be compiled without the ASSERT()’s described above, so it
will need additional code to trap potentially-fatal errors.

ALMA C++ Coding Standards

Revision: 5 Page 13

Guidelines

- Keep local variables as local as possible. A counter which is used only in one
for loop should be initialized in that loop, rather than at the top of the function.
Keep in mind however, that any variables declared inside nested loops will be
repeatedly constructed and destructed. In cases where construction or destruction
are expensive, it may be preferable to declare the variable outside the loop.

- Pass parameters by reference rather than by pointer unless pointer manipulation
or a null pointer is a possibility.

- Read “Writing Solid Code” [6].

5.3 Code Style

Standard

• Use consistent nested indentation throughout your code. When working in
existing code, respect the indentation style currently in use. At a minimum,
indentation should be consistent within a function or a class declaration.

Guidelines

- Nested indentation should be 4 characters at each level.

- Avoid very long functions which may be difficult to comprehend and maintain.
If a function becomes too long, break it into logical chunks and put each chunk
into a function of its own. A function that is more than 100 lines, including
comments and white space, is generally considered to be too long. Some authors
recommend that a function should fit on one screen of your text editor.

- Files longer than 1000 lines should be avoided.

- Use braces liberally. It is a good idea to put braces around any branch or loop
code even if it is a single statement, because sooner or later someone will want to
add another statement to the loop and forget to add the brace.

- Use parentheses liberally. They do not add code, but they can help avoid
precedence or ordering mistakes, and can help readability.

- Use white space liberally to make code more readable by putting space before
and after operators and between the sections of a complex statement.

- Line length should not exceed 80 characters as telnet interfaces are sometimes
used to deal with code.

5.4 Organization

Guidelines

- Tricky C or C++ syntax should be avoided; clarity should be emphasized, rather
than emphasizing intricacy or cleverness or brute conciseness. Conciseness is an

ALMA C++ Coding Standards

Revision: 5 Page 14

admirable goal, but it should not be allowed to interfere with understandability or
maintainability.

- Optimize code only after performance measurement shows where the time is
going. It is easy to incorrectly guess what areas of code are the bottlenecks. See
[7].

- White space should be used to group functions, and to group steps of algorithms
within functions.

5.5 Debugging

Guideline

- Use tracing statements at critical points in your code, or to follow execution
paths. Include the module and function name in each tracing statement you use.

6 Doxygen Use

The ALMA standard code documentation tool is doxygen. In this section a suggested
standard doxygen usage is presented. It is not intended that this be a doxygen primer - the
documentation for doxygen is easily available (see [8]) and is much better for that. Note
that the latest version of doxygen is 1.2.8.1

In very brief terms doxygen uses special comment delimiters (/**…*/ or ///… and
//@{…//@}) to allow the programmer to add his or her own documentation comments.
In addition doxygen constructs class hierarchies.

In addition special tokens, similar to Javadoc ones, allow the specification of particular
attributes such as author, version, etc.

The following are the recommended standards for using doxygen for ALMA software. A
suggested example ALMA usage of doxygen may be found in the appendices, including
examples of each of the following.

• Use @Include to include files for related classes..

• Use @see (where appropriate) for class documentation. Author and version are
stored in the code repository.

• Use @exception, @return, @pre, @post, and @param (where appropriate) for
C++ methods. The class Bar has a constructor method with examples.

• Use a standard configuration file to store doxygen options.

• Document private members. In general it seems better to provide more rather
than less documentation about the class.

• Use upwards arrows in the class graphs to conform with accepted generalisation
convention.

A doxygen configuration file is included in the example. It should be noted that this is a
suggested doxygen usage and that no doubt it will solicit comments. The authors feel that

ALMA C++ Coding Standards

Revision: 5 Page 15

a separate document on doxygen usage for IDL, C, C++ and Java might be more
appropriate.

7 References

1. Taligent’s Guide to Designing Programs, Taligent Press, 1994.

2. Large Scale C++ Software Design, Lakos, J., Addison-Wesley Publishing
Company, 1996.

3. C++ Programming Guidelines, Plum, T., Saks, D., Plum Hall, 1991.

4. Java Code Conventions, 1997, Sun Microsystems.

5. Effective C++: 50 Specific Ways to Improve Your Programs and Designs,
Meyers, S., Addison-Wesley, 1992.

6. Writing Solid Code, Maguire, S., Microsoft Press, 1993.

7. More Effective C++: 35 New Ways to Improve Your Programs and Designs,
Meyers, S., Addison-Wesley, 1996.

8. Doxygen, van Heesh, D., http://www.doxygen.org, 2000.

9. cxx2html - C++ to HTML Converter, Schiebel, D.,
http://aips2.aoc.nrao.edu/docs/html/cxx2html.html, 1995.

10. C++ Coding Standards, The Core Linux Consortium,
http://corelinux.sourceforge.net/cppstnd/cppstnd.html, 2000.

Appendix A. Doxygen Example

In this appendix are three example header files for three classes describing a very simple
class tree and one for a global function. The templates show how doxygen comments can
be inserted into source code. Note that example copyright and license statements are
included here. The ALMA project may agree on a standard license statement, but each
partner may be required (by funding bodies) to insert their own copyright statement.

Foo.h

Foo.h
#ifndef FOO_H
#define FOO_H

// @(#) Id
//
// [Insert copyright statement appropriate to author(s).]
//
// Produced for the ALMA project
//
// This library is free software; you can redistribute it

ALMA C++ Coding Standards

Revision: 5 Page 16

// and/or modify it under the terms of the GNU Library
// General Public License as published by the Free Software
// Foundation; either version 2 of the License, or (at
// your option) any later version.
//
// This library is distributed in the hope that it will be
// useful, but WITHOUT ANY WARRANTY; without even the
// implied warranty of MERCHANTABILITY FITNESS FOR A
// PARTICULAR PURPOSE. See the GNU Library General Public
// License for more details.
//
// You should have received a copy of the GNU Library
// General Public License along with this library; if not,
// write to the Free Software Foundation, Inc., 675
// Massachusetts Ave, Cambridge, MA 02139, USA.
// Correspondence concerning ALMA should be addressed as
// follows:
//
// Internet email: alma-sw-admin@nrao.edu

/// Foo base class, fundamental piece of code
/**
 *<P>
 * A sample Foo device.
 *<P>
 * A Foo object doesn't do much here, but hold a count to get & set.
 * It is used by FooInstantitor to blah, blah.
 *
 * <pre>
 * // Construct a foo object
 * Foo myFoo;
 * myFoo.setCount(0);
 * int fooCount = myFoo.getCount();
 * </pre>
 *
 * @see Bar
 *
 */

class Foo
{

public:
 /**
 * constructor
 * A more detailed description of the constructur
 * and its peculiarities
 */
 Foo();

 /**
 * constructor with param
 * A more detailed description of this constructor
 * and why it differs from the previous one
 */
 Foo(const Foo &);

 /// destructor, a simple one

 ~Foo();

ALMA C++ Coding Standards

Revision: 5 Page 17

 /// Overload assignment
 Foo &operator =(const Foo &);

 /// A get function
 int getCount() const;

 /**
 * A set function
 * the peculiarity of this function
 * @param new value the counter should be reset to
 */
 void setCount(const int _newValue);

 /// a public member function showing links to argument
 /// and type classes
 const Bar& getBar(const Intermediate& c) const ;

protected:
 /// a protected member variable
 double doubleCount;

private:
 /**
 * private members only show up if your doxygen configuration
 * file is set up accordingly
 */
 int m_currentCount;

};
#endif

Intermediate.h

#ifndef INTERMEDIATE_H
#define INTERMEDIATE_H

// @(#) Id
//
// [Insert here the same copyright and license statement as presented
above]

//@Include: Foo.h

/**
 * Just to make the class graph look more a little more
 * interesting. Here we show multiple inheritance from one
 * docified class and a nondocified one.
 *
 * @see Foo, NotDocified
 */

class Intermediate : public Foo, public NotDocified
{
};

ALMA C++ Coding Standards

Revision: 5 Page 18

#endif

Bar.h

#ifndef BAR_H
#define BAR_H
// @(#) Id
//
// [Insert copyright and license statement as presented above]
//
//

/**
 * A derived class.
 * Here we show inheritance from a single docified class.
 * This example shows how to structure the members of a
 * class, if desired.
 *
 * @include: Function.h
 * @include: Intermediate.h
 * @see Foo
 */

class Bar : protected Intermediate
{
public:
 /**@name Parameters */

 //@{

 /// the first parameter
 double a ;

 /// a second parameter
 int b ;
 //@}

 // constructor
 /**
 * This constructor takes two arguments and serves as
 * a suggested example of how ALMA methods should be
 * documented. It demonstrates documenting parameters
 * exceptions, return values, and pre- and post-
 * conditions.
 *
 * @param a this is good for many things
 * @param b this is good for nothing
 * @return A Bar, whatever that is.
 * @exception None
 * @pre None required
 * @post Whatever must happen next
 */

 Bar(double a, int b) ;

 /// destructor
 ~Bar() ;

 /**@name These methods belong together */

ALMA C++ Coding Standards

Revision: 5 Page 19

 //@{

 /// Calvin's transmogriphier must be loaded
 void transmogriphierLoad(int profile);

 /// the transmogriphier must be unloaded after usage
 int transmogriphierUnload(void);

 /// this activates the transmogriphier
 void transmogriphierStart(void);

 //@}
};
#endif

function.h

#ifndef FUNCTION_H
#define FUNCTION_H

// @(#) Id
//
// [Insert copyright and license statement as presented above]
//
//

//* @file This file tag is strictly necessary for doxygen */

/** A simple global function.
 *
 * This is an example for how to document global scope
 * functions. You'll notice, that there is no technical
 * difference to documenting member functions. The same
 * applies to variables or macros.
 *
 * @param c reference to input data object
 * @return Some integer
 * @see Bar
 */

int function(const Bar& c) ;
#endif

Appendix B. Example HTML Output

Since doxygen produces HTML output that has embedded JavaScript code it is easiest
here to simply provide a URL to the example set out above. The doxygen output may be
found at http://www.eso.org/~mzampare/alma/doxygen/.

1 For the class hierarchies. This may be overridden for a simpler, plain HTML representation.

ALMA C++ Coding Standards

Revision: 5 Page 20

This output was produced by running doxygen on the above with the command

doxygen alma-doxy

run in the directory where the header files are, and using some simple HTML files for
customised headers and footers. The doxygen options were specified in the alma-doxy
configuration file. The ALMA project should adopt a standard configuration file.

The customised headers are examples. The ALMA project may wish to adopt standard
headers, but it may also be appropriate for each package to provide its own standard
headers. The example banner/footer is a suggested ALMA standard.

