ALMA-SW-0010
Ataca'ma Revison: 5
Lar ge 2001-08-10
Millimeter | Sandara
Ar r ay Alan Bridger

C++ Coding Sandads

Sof t war e St andar d

AlanBridger

UK Agronomy Technology Centre
JmPAsno

National Radio Astronomy Observatory

Keywords: programming standards, C++, language

Author Signature: Dae:
Approved by: Brian Glendenning, Gianni Raffi Sgnature;
Ingtitute: NRAO, ESO Date:
Released by: Signature;

Indtitute: Date:

ALMA C++ Coding Standards
Change Record
REVISION DATE | AUTHOR | SECTIONS/PAGES AFFECTED
REMARKS
1 2000-10-16 | Alan Bridger | All
Reformatted, tidied, minor changes, DOC++ added (from JP original)
2 2000-10-30 | Alan Bridger | Section 6, appendix |
Up to date version of DOC++ used.
3 2001-02-28 | Alan Bridger [All
Responded to review comments, assigned doc. #.
4 2001-06-11 [Alan Bridger |
Namespace naming, exception guideline, copyright/license mods.
5 2001-08-8 | Michele Zamparelli |

substituted DOC++ with doxygen

Revision: 5

Page 2

C++ Coding Standards

ALMA
Table of Contents

1 C++ Coding Standards.........ccccvveeeviiieeee e 4
1.1 ST o0 o L= PR 4
1.2 Ta 1o To [UTe3 1] o ISR 4
2 Class Declarations........ccceeviveeeiiiee s e e 4
2.1 L@ 0= 1 7.4= 11 [0] o 1SS 5
2.2 Contents and SEIUCIUNEevve v 5
3 Naming CONVENTIONS.......ccvviiiiie i e e s 6
3.1 ClasSS NAIMES......cuiiie ittt saree s 6
3.2 NAMESPACES ...coeiiiiiiiiiiee ettt e e e e s st e eeeeeeeaes 6
3.3 FUNCHON NAMES.....ciiiiiiiiiee ittt 7
3.4 Variable NameS......ccuvio i 7
35 Other NAMES........eviei et 8
3.6 File NAMES......ooiiiiiiie e 8
4 Code COMMENTING....coouiiieieee et e e 9
4.1 HeadEr FIlES.....coi i 10
4.2 SOUICE FlES .. 10
5 Object Implementation GUIdeliNEScccovoeiiiiiiiiieiieeniee 11
5.1 SHTUCTUIE. ...ttt e e e e e e e e e e e e e e e s e ennnnes 11
5.2 RODUSINESSciciie et st e et 12
5.3 COUE StYIE...iiiieeeee e 13
5.4 Organizationcceeeeiiieeesiiieeeseiiee e sstee e stae e e s seae e e snnaee e e e e nnaeee s 13
5.5 (=101 0o To 1 oo [SR 14
6 DOXYGENUSE ..ttt 14
7 REFEIENCES.....oiie et 15
Appendix A. DOXYJenEXamPleccocviviiiii i 15
Appendix B.Example HTML OULPULoooieiiiiiiiiene e 19

Revision: 5

Page 3

ALMA

11

1.2

Revision: 5

C++ Coding Standards

C++ Coding Standards

Scope

This document describes the C++ coding guidelines agreed upon by the software
engineering team. These guidelines are expected to be adhered to in all future C++
software development. Existing code will not be required to be rewritten to adhere to
these guiddines, but it is suggested that reasonable efforts are made to adhere to the new
guiddines when working on existing code.

Introduction

This document was written with the following goads in mind:
1 Code should be robust and error free.

2. Code should be easy to use and understand.

3. Code should be easy to maintain.

Each section of this document contains recommended standards in that area, aong with
afurther list of guidelines A standard isrequired to be followed in dl future
development. If a programmer must violate a standard, then the reason for doing so
must be strong and clearly documented via code comments. Guidelines are just that.
Individua programmers are encouraged to program in a style which is consistent with the
rest of the programming team, but differing code styles are acceptable.

These standards recognize that individua programmers have the right to make judgments
about how best to achieve the god of code clarity. When working on others' code, please
respect and continue existing styles which, athough they may differ from your own, meet
these guidelines. Thisin turn leads to what is perhaps the most important aspect of

coding style: consistency. Try, as much as possible, to use the same rules throughout the
entire program or module.

Class Declarations

Standards

Robust, error-free, easy to use, understand, and maintain class declarations are
the single mogt critical element of programming style, see[5], item 18.

Class declarations should be platform invariant to the grestest extent possible.
Any compiler conditiona directives should be minima and documented.

Use include guards in header files to prevent multiple inclusion.

Within each section, member functions and member data should not be
interspersed.

Page 4

ALMA

C++ Coding Standards

The default constructor, copy constructor, assignment operator, and destructor
should be either explicitly declared or made inaccessible and undefined rather
than relying on the compiler -generated defaults. See [5], item 27.

2.1 Organization

Guidelines

There should be a most one public, one protected and one private section in
the class declaration. They should be ordered so that the public section comes
first, then the protected section, and lastly the private section.

Member functions and data should be listed logically. For example, all
constructors should be grouped together, al event handling routines may be
declared together, as may the routines which access member data. Each logica
group of functions should have a common comment above the group explaining
why they are grouped together.

In generd there will be one class declaration per header file. In some cases,
smaller related classes may be grouped into one heeder file.

2.2 Contents and Structure

Standards

Class data members must dwaysbe pri vat e. If accessto them is required then
this must be provided through public or protected member functions. See[5],
item 20.

Useconst whenever possible for function, reference and pointer parameters,
and data member declarations, except where non-constnessisrequired. Usethe
nmut abl e keyword to as needed for datawhichislogicaly but not physicaly
congt (for example, read buffers implemented for efficiency).

A class' s declaration must expose the logica usage of the class, and protect or
hide its implementation details. The capacity to make the greatest degree of
enhancement and modification with the least change to class declaration is highly
desirable for effective maintenance, especidly for class interfaces exposed in
shared libraries.

Guiddlines:

Revision: 5

Forward declarations should be employed when saf dy gpplicableto minimize
#include dependencies and reduce compilation time. Forward declarations may
be applied to avoid including declarations of objects that are used solely by
pointer/reference or as function return values; they may not be used if the object
serves as a base class, or as a non-pointer/reference class member or parameter.
See[5], item 34.

Implementation details of complex class declarations should be moved to the

class definition to reduce #include dependencies and to enhance the gbility to
modify class implementation without changing the class declaration.

Page 5

ALMA

3.1

3.2

Revision: 5

C++ Coding Standards
- Organize class member functionsin your source code in the same order they are
declared in the class interface.
- For dasses requiring a significant amount of source code in their implementation,
identify member function groupings by their accessibility scope (i.e. “public

member functions’, “private member functions’, “ static member functions’,
etc.).

Naming Conventions

Standards

Clear and informative names are one of the best toolsfor cresting easily
understandable code. The name of any identifier should succinctly describe the
purpose of that identifier.

Avoid abstract names (in agloba context) that are likely to be reused by other
parts of the system.
Guidelines

- Itisrecommended that names be a mixture of upper and lowercase letters to
delineate individual words or separated by underscores . Use descriptive names
and avoid abbreviations except where the abbreviation is an industry or project
standard.

- See[5], 8 9 for amore detailed set of guiddines.

Class Names

Standards
Class names must identify the type of the object they represent. (e.g. “Message’
or “OutputDevice’).

Guidelines

- Class names will consist of nouns or noun combinations. Derived class names
should be suffixed by base class names (e.g. “ ClockOutputDevice” or
“EditorCWin").

- Thecapitdization rule for class names should be dl words in the name
capitdized, eg. “ClassName’.

Namespaces

Standards

Namespace names must be related to the domain they delimit.

Page 6

ALMA C++ Coding Standards
Namespace names must identify the namespace uniquely.

Guiddines

- Thecapitdization rule for Namespace names should be al words in the name
capitalized, e.g. “MySpace’. No underscores are allowed.

3.3 Function Names

Standards
Function names mugt identify the action performed or the information provided
by the function.
Guidelines
= Function names will generaly begin with averb.

= The capitdization rule for function names should be dl wordsin the name
capitalized, except for the firdt, eg. “functionName'.

3.4 Variable Names

Standards

The type and purpose of each variable should be evident within the code in which
it isused. E.g. the reader will expect count er tobeani nt , not or Set might
be aBOOLEAN or an array representing a set —context will usualy clarify this.
And whilethetype of sessi onl d might not be obvious it will be expected to
be an identifier or handle that labels some sort of session. Class member data

must be easly distinguishable from locd datain a consistent manner.

Names should be formed from composite words, delimited by upper case letters,
with no underscores dlowed (except for appending pointer identifiers etc.)
Underscores should be used as delimiters in macro names.
Guidelines
- Variable names should be short, but meaningful.

- Loca variables should be named with the content of the variable. Each word

except the first oneis capitalised. For example, count er and sessi onl d are
acceptable variable names.

- Global variables should be smilarly named except that each word is capitalised.
For example, Exposur eTi e is acceptable.

- Pointer variables should be identified, preferably by appending “_p”, for
example

Revision: 5 Page 7

ALMA C++ Coding Standards

struct s * meani ngful Nanme_p

- Identify class member varigbles by appending"_m", where “m” stands for
“member.” Vdid member variable names would include “fileName m” and
“recordCount_m"”.

- The capitdization rule for variable names should be adl words in the name
capitalized except for thefird, eg. “variableName’.

35 Other Names

Standard

Macros, enumeration constants and global constant and typedef names should be
styligticdly distinguished from class, function, and variable names.

Types (dtruct types, etc.) should be given meaningful names and begin with an
uppercase letter in order to distinguish them from variables.

Guideline
- Macros, enumeration constants and globa constant and globa typedef names

should bein all uppercase with individua words separated by underscores, eg.
DATA_VALID, constint MIN_WIDTH =1,

3.6 File Names

Standards
Header file names should have the extension “.h”.
C++ Implementation (source) file names should have the extension “.cpp”.
File names should contain only aphanumeric characters, “ ” (underscore), “+”
(plus sign), “-* (minussign), or “.” (period). Meta-characters and spaces must be
avoided. Also file namesthat only vary by case are not permitted.
When used with the ESO CMM filenames should contain the module name as a
prefix.

Guideline

- In generd, file names should declare the contained class name.

Revision: 5 Page 8

ALMA C++ Coding Standards

4 Code Commenting

Standards

All files, both header and source, must begin with the standard header
information, which contains the file identification information, a one line
description of the class, and the copyright notice. See the example header filesin
Appendix A. Different copyright statements may be required for different sites.

The header may aso contain alonger description of the purpose of the class and
any other pertinent information about the class.

A change log for each module must be maintained in a manner appropriate tothe
development environment. Exactly how thisis doneis till to be determined by
the development environment chosen.

Comments intended for documentation should use the doxygen style. A template
for the ALMA project may be found in Appendix A.

Block style and in-line comments are both acceptable.

Block style comments should be preceded by an empty line and have the same
indentation as the section of code to which they refer. Block style comments
should appear a the begnning of the relevant segment of code. C++ style
comments ("//") are preferred.

Block Style:

Brief comments on the same line as the statement that they describe are
appropriate for the in-line commenting style. There should be at least 4 spaces
between the code and the start of the comment.

In-Line Comments:

Usein-line comments to document variable usage and other small comments.
Block style comments are preferable for describing computation processes and
program flow.

Guidelines

Revision: 5 Page 9

ALMA

4.1

4.2

Revision: 5

C++ Coding Standards

Usethe Id RCS identifier for dl RCS-based source code control tools. The
d identifier expandsto $Id: filename revision date time author state $.
When used with ESO's CMM the identifier must be preceded by @(#).

Usea“ToDo” section in the header comments to indicate those items that remain
to be done.

Header Files

The primary goal of interface commentsisto define the class and its members a alevel
appropriate for anew user of the class. Interface comments should be as concise as
possible to meet this god.

Standards

Documentation comments will allow for doxygen extraction to provide a generd
understanding of the class and its interface. See Section 6.

Interface commenting must be complete and up-to-date a al times during a
cass lifetime.

Each member data dement must be described.

Each member function must be described. In addition to specifying what the
function does, this description must include:

a) For copy constructors and assignment operators, whether or not copy or
reference semantics are used.

b) What the parameters are, how they are used, and any preconditions that must
be established for the parameters. A variable name, in addition to its type,
must be used to identify the parameter’ s purpose.

c) What the function is going to do to the parameters and to the object itself.

d) What the results/return values are in dl the different cases possible for the
function.

€) What exceptions the function might throw.

Guideline

The preferred format for member data element commentsis doxygen style
comments (///) above at the same indentation level of the code thet is being
discussed. C++ style comments (//) may be used when documentation is not
reguired.

Source Files

Standards

All comments in source code files must be up-to-date at dl times during thet
code's lifetime.

Page 10

ALMA

5.1

Revision: 5

C++ Coding Standards

Code comments should be used to give an English language synopsis of a section
of code, to outline steps of an algorithm, or to clarify a piece of code when it is
not immediately obvious what was done or why it was done. In no case should
the code comments just parrot the code.

Guidelines

Code comments which apply to ablock of code (either aloop or branch
congtruct, or agrouping of statements), should be immediately above the block
and indented to the same level as the code.

Code comments which apply to a single satement may be immediately above or
to the right of the statement. If above the statement, the comment should be
indented to the same level asthe code. If to theright of the statement, sufficient
white gpace should be used to separate the comment from the code.

Usealine of dashes‘— to visudly block off member function definitionsin the
source file. This alows easy identification of where the functions start.

Object Implementation Guidelines

This section provides some basic implementation guidelines for C++. It does not provide
a complete nor exhaustive list of guidelines that ensure correct C++ usage. There are
many exce lent references which can provide this information some of which are listed in
section 7 ([3] and [5]), Meyer’s book is especidly insightful.

Structure

Standards

In generd, hide the implementation details from the interface. This encompasses
issues including data member accessibility (avoid public), implementation of
assignment operators and copy constructors, and judicious use of inheritance and
virtua functions. See [5] items 20, 11-17, and 35-43.

Minimize the use of the globa name space.

For software intended for workstations make use of namespaces to partition the
globa name space. For software intended for LCUs (and for common software
that can be used on LCUs or workstations) hamespace support cannot be
guaranteed and so namespaces should not be used.

When namespaces are not used, structs can be used to break up the globa name
space. Global scope functions, data, and even types should be kept to a
minimum, and these identifiers linked to the most logically-related class.
Functions used within a class should be member functions of that class rather
than hidden dobal scope functions. Enumerated types used specifically for one
class should be declared within that class. See [5], items 28, 32 and 47. Also of
note is amacro definition in ACE that smulates namespaces.

Guidelines

Page 11

ALMA

5.2

Revision: 5

C++ Coding Standards

- Global datic objects should be avoided. If they are used, care should be used
when declaring globa datic objects as they cause initidization ordering
problems and cause problems in a multi-threaded environment. An instantiator
class which counts references to an object should be implemented. See [4], topic
4.04 or [5], item 47.

- Projectwide header fileswhich declare, include and define everything useful and
shared for an entire project smplifies the project organization. This process must
be somewhat controlled as it can lead to large includes and dow the build process
dramatically. Asthe project matures, this project wide header can be pared down
with forward declarations replacing include files.

- If used, exceptions should be specified in the Sgnature of the class method
dedlar ation and definition. This should include any exceptions that might be
thrown directly or indirectly by the method.

- Create your own exception heirarchies reflecting the domain and define relevant
exception classes derived from the standard exception class. See [10]. E.g.

cl ass Qut put Devi ceException : public exception {..};
cl ass QutputDevice : public Device

{
b
- Usarsof ACE TAO on vxWorks may till be constrained to using the ACE
exception emulation and should follow the ACE guiddines.
Robustness

Function definitions must -- to the fullest extent possible -- trap invalid or undefined use
of the class.

Standards

Declare const variablesinstead of using #defines for smple congtants. The
compiler will provide alevel d type checking when the constants are used.

Initidize al member data and locd variables. All pointers should beinitidized
to appropriate values or NULL.

Use ASSERT() s or comparable debugging mecros liberdly to trgp potentia
programming errors (in your class code or in the calling function’s code).
Vdidate dl parameters passed to any publ i ¢, pr ot ect ed, or even

pri vat e function. Verify dl assumptions about the environment in which each
functioniscdled. Verify intermediate vaues caculated by your agorithms.

Handled| potentidly-invalid parameters or environmenta conditionsin a

graceful, consistent, and documented manner. Remember that the fina version

of your class should be compiled without the ASSERT() ’s described above, so it
will need additiond code to trgp potentidly -fatal errors.

Page 12

ALMA C++ Coding Standards

Guidelines

- Keeplocd variables aslocd as possible. A counter which is used only in one
f or loop should beinitidized in that loop, rather than at the top of the function.
Keep in mind however, that any variables declared inside nested loops will be
repeatedly constructed and destructed. In cases where construction or destruction
are expendgive, it may be preferable to declare the varigble outside the loop.

- Pass parameters by reference rather than by pointer unless pointer manipulation
or anull pointer is a possbility.

- Read “Writing Solid Code’ [6].
5.3 Code Style

Standard

Use consgstent nested indentation throughout your code. When working in
exigting code, respect the indentation style currently in use. At a minimum,
indentation should be consstent within a function or a class declaration.

Guidelines
- Nested indentation should be 4 characters a each levd.

- Avoid very long functions which may be difficult to comprehend and maintain.
If afunction becomes too long, break it into logical chunks and put each chunk
into afunction of itsown. A function that is more than 100 lines, including
comments and white space, is generally considered to be too long. Some authors
recommend that a function should fit on one screen of your text editor.

- Fileslonger than 1000 lines should be avoided.

- Usebracesliberdly. Itisagood ideato put braces around any branch or loop
code even if it is a single statement, because sooner or later someone will want to
add another statement to the loop and forget to add the brace.

- Useparenthesesliberally. They do not add code, but they can help avoid
precedence or ordering mistakes, and can help readability.

- Usewhite space liberdly to make code more readable by putting space before
and after operators and between the sections of a complex statement.

- Linelength should not exceed 80 characters as telnet interfaces are sometimes
used to ded with code.

5.4 Organization
Guidelines

- Tricky C or C++ syntax should be avoided; clarity should be emphasized, rather
than emphasizing intricacy or cleverness or brute conciseness. Concisenessisan

Revision: 5 Page 13

ALMA

5.5

Revision: 5

C++ Coding Standards

admirable god, but it should not be dlowed to interfere with understandability or
maintainability.

- Optimize code only after performance measurement shows where thetimeis
going. Itiseasy to incorrectly guess what areas of code are the bottlenecks. See

[7]

- White space should be used to group functions, and to group steps of agorithms
within functions.

Debugging

Guideline

- Usetracing statements at critica pointsin your code, or to follow execution
paths. Include the module and function name in each tracing statement you use.

Doxygen Use

The ALMA standard code documentation tool isdoxygen. In this section a suggested
standard doxygen usageis presented. It is not intended that this be a doxygen primer - the
documentation for doxygenis eesly available (see [8]) and is much better for that. Note
that the latest version of doxygen is 1.2.8.1

Invery brief terms doxygen uses special comment delimiters (/**...*/ or ///... and
/l@{.../l@}) to alow the programmer to add his or her own documentation comments.
In addition doxygen constructs class hierarchies.

In addition specid tokens, smilar to Javadoc ones, alow the specification of particular
attributes such as author, version, etc.

The following are the recommended standards for using doxygen for ALMA software. A
suggested example ALMA usage of doxygen may be found in the appendices, including
examples of each of the following.

Use @Include to include files for related classes..

Use @see (where appropriate) for class documentation. Author and version are
stored in the code repository.

Use @exception, @return, @pre @post, and @param (where appropriate) for
C++ methods. The class Bar has a constructor method with examples.

Use agtandard configuration file to store doxygen options.

Document private members. In genera it seems better to provide more rather
than less documentation about the class.

Use upwards arrows in the class graphs to conform with accepted generdisation
convertion.

A doxygen configuration file is included in the example. It should be noted that thisisa
suggested doxygen usage and that no doubt it will solicit comments. The authors fed that

Page 14

ALMA C++ Coding Standards

aseparate document on doxygen usage for IDL, C, C++ and Java might be more
appropriate.

7 References
1. Tdigent's Guideto Designing Programs, Tdigent Press, 1994.

2. Large Scale C++ Software Design, Lakos, J., Addison-Wedey Publishing
Company, 1996.

3. C++ Programming Guidelines, Plum, T., Saks, D., Plum Hal, 1991.
4. Java Code Conventions, 1997, Sun Microsystems.

5. Effective C++: 50 Specific Ways to Improve Y our Programs and Designs,
Meyers, S., Addison-Wedey, 1992,

6. Writing Solid Code, Maguire, S., Microsoft Press, 1993.

7. More Effective C++: 35 New Ways to Improve Y our Programs and Designs,
Meyers, S., Addison-Wedey, 1996.

8. Doxygen van Heesh, D., http://www doxygen.org, 2000.

9. cxx2html - C++to HTML Converter, Schiebd, D.,
http://ai ps2.aoc.nrao.edu/docs/html/cxx2html.html, 1995.

10. C++ Coding Standards, The Core Linux Consortium,
http://corelinux.sourcef orge.net/cppstnd/cppstnd.html 2000.

Appendix A. Doxygen Example

In this appendix are three example header files for three classes describing avery smple
classtree and one for a global function. The templates show how doxygen comments can
be inserted into source code. Note that example copyright and license statements are
included here. The ALMA project may agree on a standard license statement, but each
partner may be required (by funding bodies) to insert their own copyright statement.

Foo.h

Foo. h
#i f ndef FOO_H
#def i ne FOO_H

I @#) $1ds$

H [Insert copyright statenment appropriate to author(s).]
H Produced for the ALMA proj ect

H This library is free software; you can redistribute it

Revision: 5 Page 15

ALMA C++ Coding Standards

/1 and/or nodify it under the terns of the GNU Library

/'l General Public License as published by the Free Software
/1 Foundation; either version 2 of the License, or (at

/1l your option) any |later version.

/1 This library is distributed in the hope that it will be
/1 useful, but W THOUT ANY WARRANTY; without even the

[l inplied warranty of MERCHANTABILITY FI TNESS FOR A

/1 PARTI CULAR PURPOSE. See the GNU Li brary General Public
/1 License for nmore details.

/1 You should have received a copy of the GNU Library

/'l General Public License along with this library; if not,
// wite to the Free Software Foundation, Inc., 675

/'l Massachusetts Ave, Canbridge, MA 02139, USA

/1 Correspondence concerni ng ALMA shoul d be addressed as
/1 follows:

/1 Internet email: al ma- sw-adm n@r ao. edu

/1l Foo base class, fundamental piece of code
/**
*<pP>
* A sanple Foo device
*<pP>
* A Foo object doesn't do nmuch here, but hold a count to get & set.

* |t is used by Foolnstantitor to blah, blah.
*

* <pre>

* |/ Construct a foo object

* Foo nyFoo;

* myFoo. set Count (0);

* int fooCount = nyFoo. get Count();
* </ pre>

*

* Oee Bar

*

*

/

class Foo

{
public:

/**
* constructor
* A nore detailed description of the constructur
* and its peculiarities
*/
Foo();

/**

* constructor with param
* A nore detailed description of this constructor
* and why it differs fromthe previous one
*/
Foo(const Foo &)

[/l destructor, a sinple one

~Foo();

Revision: 5 Page 16

ALMA C++ Coding Standards

/1l Overload assignnent
Foo &operator =(const Foo &);

/1l A get function
int getCount() const;

/**
* A set function
* the peculiarity of this function
* @aram new val ue the counter should be reset to
*/
voi d set Count(const int _newval ue);

/11 a public nmenber function showing |inks to argunent
/1l and type cl asses
const Baré& getBar(const Internediate& ¢) const ;

pr ot ect ed:
/1l a protected nenber variable
doubl e doubl eCount ;

private:
/**
* private nmenbers only show up if your doxygen configuration
* file is set up accordingly
*/
int mcurrent Count;

b
#endi f

Intermediate.h

#i f ndef | NTERVEDI ATE_H
#define | NTERVEDI ATE_H

I @a#) $1d$

/1

/'l [Insert here the same copyright and |license statenment as presented
above]

/!l @nclude: Foo.h

~
*

E N

~

Just to nake the class graph look nore a little nore
interesting. Here we show nultiple inheritance from one
docified class and a nondocified one.

@ee Foo, Not Doci fi ed

class Internediate : public Foo, public NotDocified

{
}s

Revision: 5 Page 17

ALMA C++ Coding Standards

#endi f

Bar.h

#i f ndef BAR_H

#defi ne BAR H

I @a#) $1d$

/1

/'l [Insert copyright and |icense statenent as presented above]
/1

11

*

A derived cl ass.

Here we show i nheritance froma single docified class.
Thi s exanpl e shows how to structure the nenbers of a
class, if desired

@ ncl ude: Function.h
@nclude: Internediate.h
@ee Foo

E L I I . . T T

~

class Bar : protected Internediate

{

public:
[** @ame Paraneters */
11a
/1l the first paraneter
double a

/1l a second paraneter

i nt b ;
1@

/'l constructor
/**

* This constructor takes two argunents and serves as

* a suggested exanple of how ALMA net hods shoul d be
* docunented. It denonstrates docunmenting paraneters
* exceptions, return values, and pre- and post -

* conditions.

*

* @aram a this is good for many things

* @aram b this is good for nothing

* @eturn A Bar, whatever that is.

* @xception None

* @r e None required

* @ost \Whatever nust happen next

*/

Bar(double a, int b)

/1l destructor
~Bar () ;

[** @ame These net hods bel ong toget her */

Revision: 5 Page 18

ALMA C++ Coding Standards

1@

/1l Calvin's transnogriphi er nust be | oaded
voi d transnogri phi erLoad(int profile);

/1l the transnogriphier nmust be unl oaded after usage
i nt transnogri phi erUnl oad(void);

/1l this activates the transnogri phier
voi d transnogri phierStart(void)

1@
b
#endi f

function.h

#i f ndef FUNCTI ON_H
#defi ne FUNCTI ON_H

I @#) $1d$

11

/'l [Insert copyright and |icense statenent as presented above]
11

/1

['1* @ile This file tag is strictly necessary for doxygen */

[** A sinple global function

*

* This is an exanple for how to docunent gl obal scope
* functions. You'll notice, that there is no technica
* difference to docurmenting nenber functions. The sane
* applies to variables or nacros.

*

* @aram ¢ reference to input data object

* @eturn Sonme integer

* @ee Bar

*/

int function(const Bar& c)
#endi f

Appendix B. Example HTML Output

Since doxygen produces HTML output that has embedded JavaScript code it is easest

hereto simply provide a URL to the example set out above. The doxygen output may be

found a http://www.es0.org/~mzampare/dmaldoxygen.

1 For the class hierarchies. This may be overridden for asimpler, plain HTML representation.

Revision: 5 Page 19

ALMA

Revision: 5

C++ Coding Standards

This output was produced by running doxygen on the above with the command

doxygen al na-doxy

run in the directory where the header files are, and usng some smple HTML filesfor
customised headers and footers. The doxygen options were specified in the almadoxy
configuration file. The ALMA prgject should adopt a standard configuration file.

The customised headers are examples. The ALMA project may wish to adopt standard

headers, but it may aso be appropriate for each package to provide its own standard
headers. The example banner/footer is a suggested ALMA standard.

Page 0

