C Language Coding Standard

For
CS1003, CS1013, and CS2635

Rick Wightman

Faculty of Computer Science
University of New Brunswick
Fredericton, NB

January, 2001

INTRODUCTION

Programming is a craft. Skill in a craft requires artistic talent, or creativity, and the application of
discipline. The purpose of a program isto communicate a fuly specified set of instructions to the
computer; however, there is an equally important requirement for a program to communicate to
other programmers: it'sauthor, the devel opment team members, themai ntenance programmersover
theentirelifespan of the program. Al so, within education and open source communities, source code
is treated as “educational text” with the expectation that it be treated with the same care as a
traditional textbook. The skill of disciplineispart of thisprocessand isformally expressed through
coding standards. Standardizing the mechani csof code construction allowsthe programmer to focus
on the creative aspects knowing that others can easily appreciate and understand what is intended
and how it is accomplished.

Toliken this processto writing an essay: if you don't have to think about how to form thoughtsinto
sentences and then paragraphs; if you have a command of the language and you understand its
grammar and syntax, then you can focus all of your efforts on expressing yourself effectively and
the essay will flow with relatively little effort. If you are missing this skill, then readers oend their
time trying figure out what exactly you are trying to say instead of following your train of thought
and thinking about what it means. More immediately, the programmer spends much more time
programming.

So coding standards are important. What follows is a set of coding standards appropriate for use
within undergraduate courses in the UNB Faculty of Computer Science curriculum that use the C
programming language. They are not intended to be definitive. They are intended to provide
guidance for small programming efforts typical in undergraduate courses.

The coding standard is discussed in terms of overdl program source file organization, function
organization, statement organization and naming of functions and variables. Lastly there is a
discussion of the role of library functions within courses. Following this, an example program
attempts illustrates the implementation of the coding standard.

SOURCE FILE ORGANIZATION

Therecan be many sectionsto aprogram sourcefile. Thefoll owing discussion presentsadescription
of each section. The ordering presented here should be used. Not al of the section types will
necessarily be used in all programs inwhich case don’t put them in. Each of the sections should be
clearly identified within the program source file using comments and white space (blank lines).

File Documentation
Thefirst item in a source file should be a comment block identifying the name of thefile, it's
author and what functionality the code provides. Each individual function withinthefile should
also have a comment block naming the function and the functionality it provides.

Preprocessor |nformation
This section should list the header files that are needed (#i ncl ude), followed by the
preprocessor macros (#def i ne aswell as others). Preprooessor macro names should use capital
letters only.

Type Definitions
These are programmer defined data types, named using the C keyword t ypedef . Within some
programming teams, st ruct definitions, without the associated variables but with the fields

C Language Programming Standard (January, 2001), page 2

listed are also heavily used. Thisavoids introducing both at ypedef identifier and a structure
for infrequently used structures

Function Prototypes
Prototypesfor all programmer defined functions should be presented. The arguments should be
specified with both data type and name (e.g. float fXval ue).

The main Function
Thisisthe main program (function) body. It should be preceded by acomment block describing
what it does. This function must be present in programs contained in a single source (. ¢) file.
For larger programsdivided intoseveral sourcefiles, itmust be present inexactly one sourcefile.

Functions
Functions should be listed last. Ordering of the functions themselvesisat the discretion of the
programmer; however a top-down approach is suggested.. This means that the first functions
defined should be those that are called from the main and that function calling no other function
are listed last. Each function should be preceded by a comment block listing what duties the
function performs.

FUNCTION FORMAT

As already stated, the function should be preceded by a comment block. All functions except the
main will have a prototype liged in the prototype section of the program source file. The main
function must be of typeint (i.e.i nt mai n())must return an appropriate completion code. The
following discussion should be applied. Thefunction should haveat | east threeidentifiabl e sections:
variable declaration; function code and function return.

Variable Declaration
All variables to be used in the function will be listed immediately following the function’s
opening brace. Variables will be listed, one per line, with an inline comment describing its
purpose. All variables within a program sourcefile are to be declared within afunction. Global
variablesarenot to be used, except in specific circumstances accompani ed by careful discipline
and extensive style rules that are outside of the scope of this document.

Function Code
The function code performs that task required of the function.

Function Return
The return statement (r et ur n) should appear as the last statement in the function. The retum
statement may be optional for functions of typevoi d for some programming projects.
STATEMENT (BLOCK) FORMAT
Statement (code) blodks should set off by indenting using atab. The opening brace of a statement
block should stand by itself in aline, as should the clasing brace with neither brace being themselves
indented. An inline comment may be useful after the closing brace to identify what it closes.
Within a statement block it may be useful to separate tasks using blank lines.
Statementsthat exceed the width of the screen (or the width of aprinted page) shoud be brokeninto

C Language Programming Standard (January, 2001), page 3

more than one line so that the continuation lineis indented from the parent line.

NAMING

Thisisan incredibly important areathat beginning (and other) programmers overlook. The naming
of afunction or variable should leavelittle question about the purposeit serves within the program.
Thereareseveral different, widely used standards for “naming”, i.e. choosing identifiers. It will be
necessary to follow whichever standardis prescribed for the prgect. Coursework should follow the
standard in this document unless the instructor specifies otherwise.

Functions
Function names should be meaningful. Names made up of multiplewordsshould havetheinitial
letter capitalized, except for the first word (e.9. cal cFut ur eval ue).

Variables
Variable names should follow the same pattern as function names with one additional
complication: the variable name shoud be prefaced by data type identifiers. The identifier
schemeisasfollows

Name Datatype Prefix | Example

Character char c clnitial

Short Integer short [iDiceVaue

Integer int [iNumberOfMarks

Long Integer long I IWorldPopulation

Single-precision Real float f fStudentMark

Double-precision Real double d dX Coordinate

String char*orchar[] | s sStudentName

Pointer <type> * p plWorldPopulation
Style

The use of side-effects is discouraged since it detracts from readability and comprehension.
There should be no more than one statement on each line. White space (blank lines) should be
added to space out statements for added readability.

LIBRARY ROUTINES

Use of Library Routines
The student is expected to use library routines that have been covered in the course, or in a
prerequisite course, when they will simplify the program. For example, rather than write code
to copy astring, students would be expected to usest r cpy () . The exception to this rule would
bewhenwriting thiscodeispart of theassignment (e.g. “ Writeafunction that demonstrateshow
thest rcpy() function might be coded.”). Generally C programmers should make heavy use of
thestring (e.g.st rcpy()), character (e.g.i sal pha()) andstandardi/o(e.g.printf ())library

C Language Programming Standard (January, 2001), page 4

functions.

Prototypesfor Library Routines
Use of the correct prototype for each library routineisrequired. This prototype must be supplied
by providing the correct header (. h) file by means of an#i ncl ude statement. Under UNIX and
Linux, the command man command can be used to determinethe correct .h file. Mog compilers
include an option (e.g. - val I for gcc) that reports on failureto provide a prototype.

Thegets() Library Function
Use of the standard i/o function gets() is absolutely prohibited since it introduces an
unavoidable security hole and/or bug into every program it is a part of (see, e.g. Stevens, W.
Richard. 1993. Advanced programming in the UNIX environment. Addison Wesley. Pp 130-
131).

C Language Programming Standard (January, 2001), page 5

SAMPLE PROGRAM SOURCE FILE

/ *
* t empl at e: a templ ate for the construction of C |anguage
* program source files. Presents a solution for
* calculating the length of a line fromits
* composite segnments
*
* Aut hor : Ri ck W ght man, 61340
* CS1003
* Uni versity of New Brunswi ck
* Fredericton, NB
*
* Creat ed: 24 Decenber, 2000
*
* Modi fi ed
*/
/** REQUI RED HEADER FI LES */

#i ncl ude <stdio. h>
#i ncl ude <mat h. h>

/** MACRO DEFI NI TI ONS */
#def i ne MAXCOORD 100

/** FUNCTI ON PROTOTYPES */

fl oat cal cHypotenuse(float x1, float yl, float x2, float y2);

/** MAI N PROGRAM */

/*

* main: Accepts x y values fromthe keyboard and cal cul ates the
* hypot enuses (di stances) between the coordinates
*/

int main(int argc, char* argv[])

fl oat f XCoord[MAXCOORD] ; /* x values frominput */
float fYCoord[MAXCOORD] ; /* y values frominput */
i nt i NCoor d; /* number of values in above arrays */

fl oat fSegmentLengt h; /* cal cul ated segment |ength */
float fLineLength; /* cal cul ated sum of segments */
i nt i El ement; /* Loop counter */
/ *
* Get x and y val ues.
*/
printf("Line Length Calculator:\n\n");
do
{

printf("Nunmber of x/y values to be entered: ");
scanf (" %", & NCoord);

i f(iNCoord < 2) printf("At |east two points must be specified\n");
}whil e(i NCoord < 2);
* Cal cul ate each segnment |length and print it out.

C Language Programming Standard (January, 2001), page 6

* Sum the total line |ength

*/

fLi neLength = 0. 0f;

for(i El ement = 0; iElement < iNCoord-1; ++iElement)

f Segment Length =
cal cHypot enuse(f XCoord[i El ement], fYCoord[iElement],
f XCoord[i El ement +1], fYCoord[i El enent +1]);

fLi neLength += f Segment Lengt h;
printf("Segment %\t (%,) to (% ,%):\tu\n", iElenment+1,
f XCoord[i El ement], fYCoord[iElenment],
f XCoord[i El ement +1], fYCoord[iEl enment +1],
f Segment Lengt h) ;
}/* End for(i... */
/*
* Print out the line length
*
/
printf("------cmeaiie e e \n")
printf("Length of line: %\n",fLineLength);
return O;

}/* End main() */

/ ** FUNCTI ONS */

~

= % 3 3k 3k kX X X X Ok F X

cal cHypot enuse: calcul ate the distance between two 2D points

i nputs:
two floating point coordinates: x1,yl and
X2,y2
returns: a floating point value of the distance between the
i nput points.

uses: <math. h>

/
oat cal cHypotenuse(float fX1, float fY1l, float fX2, float fY2)

~— =k

float fDeltaX;

float fDeltay;

fl oat fHypotenuse;

/* calculate the differences for X and Y */
fDeltaX = fX2 - fX1;

fDeltaY = fY2 - fY1;

/* cal cul ate the distance */
fHypotenuse = (float) sqrt(fDeltaxX*fDeltaX + fDeltaY*fDeltayY);

return fHypotenuse;
}/* End cal cHypotenuse() */
/** END */

C Language Programming Standard (January, 2001), page 7

