

Technical Note

Java Coding Convention

Brendon J. Wilson
April 4, 2000
Version 1.2

www.brendonwilson.com 2

Copyright Notice
Copyright © 2000-2001 Brendon J. Wilson.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.1 or any later version published by the Free Software
Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU Free Documentation License".

www.brendonwilson.com 3

Table of Contents
Copyright Notice...2
Overview................................4

Origin of this Document4
Intended Audience...4
Relation to Other Systems ...4

Detailed Description................................5
Coding Style ...5

Tabbing and Indentation...5
Import Statements..5
Variable Declarations ...6

Naming Conventions ...7
Class and Interface Names ...7
Method Names8
Variable Names ...8
Constants................................8

Documentation..8
Class Prologues ...8
Method Prologues ..9
Variable Documentation ...10
Inline Code Comments ...10

Best Practices ...11
Use the StringBuffer Class................................11
Avoid Catching Exception...11

GNU Free Documentation License...12
References...13
Revision History..14

www.brendonwilson.com 4

Overview
Origin of this Document
This document is designed to provide Java developers with a generic set of coding conventions.
By itself, a code convention does nothing; however, when combined with code reviews, proper
object-oriented analysis and design, and eXtreme Programming practices, a consistent and
thorough coding convention can help improve communication, reduce learning times for new
team members, and encourage code reuse.

Intended Audience
This document is primarily intended for Java developers, but may also be of interest to
development team managers, systems architects, and technical writers.

Relation to Other Systems
This document is based on the coding style that is prevalent in most JavaSoft example code, and
should already be familiar to most Java developers. This document also outlines how to adopt
these coding conventions by taking advantage of some of the capabilities of the VisualAge for
Java integrated development environment from IBM.

www.brendonwilson.com 5

Detailed Description
Coding Style
Coding style refers to the method of formatting code in a manner that promotes organization,
maintainability, and readability. The elements of this formatting in Java include the method of
indentation, declaration of import statements, and declarations of variables.

Tabbing and Indentation
The West Coast tabbing convention is the preferred style for Java development, as opposed to C-
style (K&R) tabbing convention. The tab indent should be 4 spaces, although it is preferred that
tabs are used rather than spaces for the actual indentation. A correctly indented piece of code
using the West Coast style:

try
{
 size = inStream.available();
}
catch (IOException e)
{
 throw e;
}

Note that opening braces always begin on a new line, and that compound statements (such as
catch) also begin on a new line. VisualAge for Java (VAJ) can be configured to automatically
format your code as you type; to configure VAJ:

1. Start VisualAge for Java.
2. Select Window | Options.
3. Select Coding, and ensure the tab spacing is set to 4 spaces.
4. Select Coding | Formatter, and check both checkboxes.
5. Select Coding | Indentation and select Smart Auto Indent.
6. Click OK.

Import Statements
Despite requiring additional coding effort, the preferred style for import statements is to provide
fully qualified class names, as opposed to wildcard imports. For example, instead of:

import java.io.*;
import javax.mail.*;
import com.brendonwilson.*;
import java.awt.*;
import java.applet.*;

the import statements should be specified completely:

import java.applet.Applet;

import java.awt.Button;
import java.awt.Label;

www.brendonwilson.com 6

import java.awt.Panel;

import java.io.FileInputStream;
import java.io.IOException;

import com.brendonwilson.FooClass;

Note that each class definition required by the class is explicitly imported, and that imports are
grouped by package; note also that import statements for standard Java libraries, and Java
standard extension libraries come first in the import block. The groups are alphabetically sorted,
as are the individual imports statements within a particular group, and each group of package
import statements is separated from the following group by a single empty line.

The import statement block should appear at the very beginning of the Java source file, before
the class prologue documentation. The final import statement should be separated from the class
prologue by two empty lines.

import java.io.FileInputStream;
import java.io.IOException;

import com.brendonwilson.foo;

/**
 * Class prologue documentation.
 */

The reason for creating import statements in this manner is to reduce the possibility of error due
to a namespace clash, as well as make the dependencies of code on specific libraries explicit.
Should specific core libraries in Java change, it’s easy to determine which classes in our code are
affected.

Variable Declarations
In addition to giving variables meaningful names, thought should be given to where variables are
declared. As a general rule, local variables should be declared at the beginning of the block of
code in the following manner:

public String format(Message message, oolean encrypt)
{
 StringBuffer out = new StringBuffer();

 if (encrypt)
 {
 message.setBody(encrypt(message.getBody());
 return format(message, false);
 }
 else
 {
 String to = “To:” + message.getToField();
 String from = “From:” + message.getFromField();
 String to = “Cc:” + message.getCcField();

 out.append(to);
 out.append(from);
 out.append(cc);

www.brendonwilson.com 7

 out.append(“\r\n”);
 out.append(message.getBody());

 return out.toString();
 }
}

Notice that the variables are declared at the beginning of the block in which they are required,
which is either immediately after the declaration of the method, or the if/else statement. The
exceptions to this rule are the declaration of Exceptions in a catch statement, and the declaration
of index variables in for loops:

try
{
 for (int I = 0; I < addresses.length; I++);
 {
 System.out.println(addresses[I]);
 }
}
catch (Exception e)
{
 throw e;
}

It is acceptable for the index of the loop to be declared in the loop; however, if the index variable
is defined before the loop, it should be declared at the beginning of the block enclosing the loop.

Naming Conventions

Class and Interface Names
Class and Interface names begin with a capital letter, with subsequent words within the name
also capitalized. Class and Interface names should provide some clue as to their purpose; good
examples:

ThreadManager
MouseListener
Cipher

Bad examples of class names include:

myclass
mainApplication
DOIT

Although all naming should avoid using abbreviations in order to preserve readability, well known
acronyms may be used in class names. In this case, the acronym letters should be capitalized,
as should first letter of any following word in the class name. For example, it would be acceptable
to have a class name of HTTPRequest, but HttpRequest, Httprequest, or HTTPrequest would not
be acceptable.

www.brendonwilson.com 8

Method Names
Unlike class names, methods should begin with a lowercase letter, with following words properly
capitalized. The method name should typically consist of an action verb, followed by the name of
an object or property; ideally, it should be possible to read a call to the method aloud in plain
English with little or no modification. For example:

 rotateAround(Axis a, double angle);

is a good name; a method call can be read as “rotate around axis a by angle degrees”. While:

 rotate(double angle, Axis a);

obscures the purpose of the method; it’s not clear what’s being rotated (the object itself, or one of
its parameters) make interpretation of the call difficult. In keeping with the Java Beans code
convention, common properties should be accessed using get and set methods. For example, an
object with a property called timeout might have a set method with the following signature:

 public void setTimeout(long seconds);

It’s clear from this method name that a call will set the timeout property on the object to be the
given number of seconds.

Variable Names
In a similar fashion to methods, variable names should begin with a lowercase letter, with proper
capitalization on subsequent words:

 int timeout;
 Property propertyTable;
 Application mainApplication;

Constants are the exception to this rule, and are detailed in the next section.

Constants
In order to differentiate class or instance constant variables from regular instance variables,
constant variables use all uppercase, and individual words are separated using an underscore:

 static final int HTTP_OK_RESPONSE = 200;
 static final String GNUTELLA_CONNECT = “GNUTELLA CONNECT\n\n”;

Documentation
Besides providing external documentation, developers are required to adequately document all
code they produce. This documentation includes not only inline documentation, but also variable,
method, and class level documentation.

Class Prologues
In order to facilitate the documentation of a class’s purpose, each class should include a brief
piece of documentation just after the import statements. The class prologue should indicate
dependencies on other classes, special notes, and any assumptions made by the class designer.

www.brendonwilson.com 9

In addition, the author, version, creation date, and copyright notice should be included using the
standard JavaDoc tags. Any additional notes, dependencies, or ‘see-also’ notes should also be
included using the appropriate JavaDoc tags.

A typical class prologue would look like:

/**
 * The first line is a summary of the class’s purpose.<p>
 *
 * The second paragraph details specifics of the class’s
 * operation, and any special dependencies, or protocols
 * developers should know about when using the class.<p>
 *
 * @author Author’s Name
 * @date January 1st, 2000
 * @version version number
 */
public class Foo extends Bar

Notice that HTML tags are acceptable in documentation, as all documentation will be compiled
using the JavaDoc tool, which produces HTML API documentation. You can configure VAJ to
automatically provide skeleton documentation when you create a new variable, method, or class;
to configure the default documentation skeleton VAJ adds to each class created using the toolbar
‘Create Class’ button:

1. Start VisualAge for Java.
2. Select Window | Options.
3. Select Coding | Macros.
4. Edit the skeleton class prologue.
5. Click OK.

Method Prologues
Similar to class prologues, method prologues should appear before each method declaration,
describing the purpose of a method. The method prologue should include JavaDoc tags to
information on the method arguments, return value, and if applicable, possible exceptions.

A typical method prologue would look like:

/**
 * Description of the method’s purpose, and any special
 * circumstances which apply to when the method should or
 * shouldn’t be called.
 *
 * @param param1 description of parameter 1.
 * @return description of the return value.
 * @exception ExceptionClass description of exception.
 */
public boolean doIt(int param1) throws ExceptionClass

As with class prologues, VAJ is capable of generating skeleton method prologues to insert at the
beginning of methods created using the ‘Create Method’ button. To configure the default
documentation skeleton VAJ adds to each class created using the toolbar ‘Create Class’ button:

1. Start VisualAge for Java.
2. Select Window | Options.

www.brendonwilson.com 10

3. Select Coding | Macros.
4. Edit the skeleton method prologue.
5. Click OK.

Variable Documentation
Variable documentation is only really necessary on class or instance variables, and should follow
the JavaDoc convention:

/**
 * Description of the variable’s purpose.
 */
public String myString;

For the most part, the purpose of local variables should be documented as a part of the inline
method comments; a local variable should only be commented if its purpose is not immediately
apparent.

Inline Code Comments
Inline code comments should be included to guide the unfamiliar developer with the operations
being performed within a method. With the exception of comments that block out old and unused
sections of code, all inline code comments should use the double-slash format of comments:

// This is a comment.

As opposed to the slash-asterisk format of comments:

/* This is a bad comment. */

The reason for using the former format is simple: if a large section of code needs to be
commented out at a later time, the latter format will result in errors, as the compiler attempts to
reconcile the open and closing of comment sections. Inline code comments should always
appear on a line by themselves.

In addition to providing adequate inline comments to guide developers, special inline comments
should be used to alert developers to areas of code that are based on questionable practices, or
need to be redone at a later date. To comment areas which contain code that needs to be
revisited at a later date for implementation:

// TODO: Description of what needs to be done.

To comment areas of code that need to fixed to operate in a more desirable fashion at a later
date:

// FIXME: Description of required fix.

Sections of code that may not yet be complete due to an unanswered question, or an unproven
assumption should be commented:

// RESOLVE: Description of the question yet to be answered.

www.brendonwilson.com 11

Best Practices

Use the StringBuffer Class
To often in Java code, developers overuse the ‘+’ operator in order to concatenate Strings;
unfortunately, this practices inadvertently affects performance. For example, when creating a
long string, a developer may be inclined to write:

String foo = “This”;
foo = foo + “ is”;
foo = foo + “ bad!”;

In this example, the Java compiler transforms the ‘+’ operator into a series of StringBuffer calls:

String foo = “This”;
foo = (new StringBuffer(foo)).append(“ is”).toString();
foo = (new StringBuffer(foo)).append(“ bad!”).toString();

As is obvious from the example, each use of the ‘+’ operator results in the creation of a
StringBuffer object, a call to append(), and another call to toString(). It is more efficient to
construct the string using a StringBuffer, use the append() method, and perform the conversion to
String as the very last step in the process:

StringBuffer foo = new StringBuffer(“This”);
foo.append(“ is”);
foo.append(“ good!”);

In addition, as append() returns the result of the concatenation, each of these calls can be
combined together:

StringBuffer foo = new StringBuffer(“This”);
foo.append(“ is”).append(“ good!”);

Avoid Catching Exception
In attempting to write error-free code, some developers may be tempted to catch Exception
without propagating a more specific Exception subclass up to higher levels of the program. This
practice should be avoided for several reasons:

1. It makes it difficult to debug software if Exceptions are never propagated.
2. It makes it masks the expected types of exceptions that may occur during normal

application operation.

Specific exceptions should be caught and the exception either rethrown, translated into another
exception and thrown, or handled appropriately. In some applications, the number of extraneous
exceptions which may be thrown in a section of code might make it overwhelming to have a catch
block for each exception type; in this situation, it is acceptable to catch Exception only if the catch
block includes documentation describing the expected Exception subclasses that the block has
been designed to replace.

www.brendonwilson.com 12

GNU Free Documentation License
In order to limit the size of this document, a copy of the GNU Free Documentation Version 1.1
has not been included within the document itself. A copy of the license is freely available for
download from the Free Software Foundation:

 http://www.gnu.org/copyleft/fdl.html

Alternatively, a copy of the license terms can be obtained by writing the Free Software
Foundation at:

 Free Software Foundation, Inc.

59 Temple Place, Suite 330,
Boston, MA
02111-1307
USA

www.brendonwilson.com 13

References
IBM Corporation. VisualAge Developer Domain [online]. Rochester, NY: International Business

Machines, 2001 [cited 3 May 2001]. Available from the World Wide Web:
(www.ibm.com/vadd)

www.brendonwilson.com 14

Revision History
Version Author Date Description
1.0 Brendon J. Wilson April 4, 2000 Document Created

1.1 Brendon J. Wilson May 7, 2001 Added section on class, method,
variable and constant names.

1.2 Brendon J. Wilson June 9, 2001 Added GNU license info.

