
ChiMu OO and Java Development:
Guidelines and Resources

v1.8 [mlf-980228]

ChiMu Corporation
1220 N. Fair Oaks Ave, #1314

Sunnyvale, CA 94089

Phone: 408 734-9068
Email: info@chimu.com

www.chimu.com

ii ChiMu Guidelines and Resources

v1.8

ChiMu OO and Java Development: Guidelines and Resources

Copyright © 1997-1998, ChiMu Corporation. All rights reserved.
Portions are Copyright © 1996-1997, Doug Lea. These are used with approval and were released into the
public domain.

iii

v1.8

Table of Contents
1 Overview___ 1

1.1 Prerequisites __ 1
1.2 Related Resources __ 1
1.3 Attributions ___ 1

2 Objects and Object-Orientation __ 3
2.1 Objects ___ 3

Summary ___ 4
2.2 Types __ 4
2.3 Classes ___ 5
2.4 Types vs. Classes ___ 5
2.5 Java__ 5
2.6 Other Concepts __ 6

3 Guidelines ___ 7
3.1 Introduction___ 7

Sources of Guidelines ___ 7
3.2 Overall Concepts___ 8

Objects: The Core Concept of OO__ 8
Two Principles ___ 8
Kent Beck___ 8

3.3 Guidelines Summary ___ 9
3.4 General OO Guidelines __ 11

Types ___ 11
Operations ___ 11
Classes __ 13
Methods ___ 13

3.5 Java-Oriented Guidelines___ 14
Types, Interfaces, and Classes: Design ___ 14
Operation and Method Design __ 15
Packages and Modularity __ 17
Method Implementation ___ 18
Documentation __ 19
Class Implementation___ 21
Overriding ___ 23
Miscellaneous___ 23
Concurrent Programming__ 24

3.6 Methodology, Notation, and CASE Guidelines _______________________________ 25
3.7 Final Guidelines __ 27

4 Definitions __ 29
4.1 Categorized __ 29

Object___ 29
Type __ 29
Class__ 30
Relationship Modeling__ 31
Patterns__ 32
Pattern: Proxy___ 32
Pattern: Functor ___ 33
Architecture __ 33
Object-Oriented Information Systems __ 34
Other Terms __ 34

iv ChiMu Guidelines and Resources

v1.8

Java Terms ___ 35
4.2 Alphabetical__ 36

5 Reading and References ___ 39
5.1 Categorized Reading___ 39

Architecture __ 39
Information Modeling __ 39
Relational Modeling and Databases__ 39
Object-Oriented Design and Analysis __ 39
UML__ 40
CRC __ 40
Patterns__ 40
Object-Oriented Programming and Languages _____________________________________ 40
Programming ___ 40
Project Management ___ 40
Client/Server Systems __ 41
UI: Human Factors___ 41
UI: Specific Guidelines ___ 42
UI: Programming Concepts __ 42
Hyptertext and WWW Design __ 42
Document Modeling__ 42

5.2 By Title__ 43
5.3 References ___ 45

6 Notation __ 51
6.1 Objects and Classes__ 51

Methods ___ 51
Attributes __ 52
Instance Variables ___ 52
Message Sends __ 52
Shorthand for hand drawings ___ 52

6.2 Types ___ 52
Shorthand for hand drawings ___ 53

6.3 Relationships ___ 53
Kilov and Ross relationship types ___ 53

6.4 Code Blocks __ 53
6.5 Other Notations___ 54

Functor __ 54
Enhancement ___ 54
Private Functionality ___ 54

1

v1.8

1 Overview
This document provides guidelines and resources for developers and teams building Object-Oriented (OO)
and Java based software systems. The materials include:

An Introduction to OO terminology and concepts
Guidelines for OO/Java systems
Definitions for common OO terms
References to other good OO resources

This document is meant to both provide an integration of the many resources available for OO and also to
serve as a jumping point into these other resources.

1.1 Prerequisites
Some familiarity with OO and Java is required for this material to be understandable. There are many
introductory books on Java that focus on different types of reader background (and new books are added
every month). For OO itself you may want to consider one of the following books:

Designing Object-Oriented Software Wirfs-Brock+WW 90

Object-Oriented Analysis and Design with Applications. Booch 94

Object-Oriented Modeling and Design. Rumbaugh+BPEL 91

Object-Oriented Software Engineering: A Use Case Driven
Approach.

Jacobson+CJO 92

For Java-oriented OO, consider:

Java Design: Building Better Apps & Applets Coad+M 96

Understanding UML: The Developer’s Guide Harmon+W 98

There are also many materials available on the WWW. See the JavaSoft web site or Yahoo links under
Java.

1.2 Related Resources
This document does not define standards but provides resources and guidelines that can be chosen as part of
a team’s standards. A common approach would be to define a separate standards document — along with
useful supporting materials like code templates, UML examples, and CASE templates — that priorities
guidelines, makes them more concrete, and fills in gaps that are important to a development team. ChiMu
uses this approach internally and recommends it to clients.

1.3 Attributions
This document collects information from several different sources, which are indicated by footnotes and
citations. The Guidelines chapter aggregates several authors’ works together. To make the attribution
easier to maintain after changes, the sources for a guideline is indicated underneath the guideline, with the
first entry being the primary copyright owner for the particular wording. Subsequent entries are conceptual
originators for the guideline. Unless otherwise noted, the original source is this document or another of
ChiMu’s documents.

Special notice and thanks go to Doug Lea for allowing the inclusion of his guidelines within this document.
See [Lea-1] for the original version.

2 ChiMu Guidelines and Resources Chapter 1
Overview

v1.8

3

v1.8

2 Objects and Object-Orientation
This chapter introduces core concepts to OO and defines terms to provide a common foundation for reading
the rest of the resources in this document. OO concepts and terms have been unifying over the last few
years, but there are still differences and imprecisions in meanings. This chapter introduces the definitions
and priorities for OO concepts that are used in this document and on ChiMu projects. See the resources
mentioned in the Overview for a full introduction to OO concepts.

2.1 Objects
The core concept to OO is Objects. Objects are
encapsulated entities that can be interacted with only
by sending them messages. A Message is a stimulus
sent to an object with a name and any parameters (as
Objects) that the message requires. A message will
cause the receiving Object to return an answer or
possibly return nothing.

message

answer
anObjectObject

Because Objects are encapsulated they have a visible exterior (that to which you can send messages and
from which answers are returned) and a hidden interior (the implementation of the functionality). Object’s
can also be viewed as having two core properties: Identity and Behavior.

Identity is the ability to tell one object from another object independently of whether they currently
appear to be the same (i.e. have the same behavior).

Behavior is the response of an object to a stimulus. The only stimulus you can send to an object is a
Message, so the behavior of an object is the answers it gives to the current and future
messages.

The above are the two core properties to an Object, but it is convenient to add a third (derived) property:

State is an abstraction to describe and simplify understanding an object’s behavior. An object’s
behavior can be described as the answer it gives to the current message (which is
determined by the current State) and the change to its State caused by the current message.

Identity Behavior State

anObject anObject

anObject
message

answer
anObject

message

answer

anObject

Change to State
resulting from
message

4 ChiMu Guidelines and Resources Chapter 2
Objects and Object-Orientation

v1.8

Summary
OO is building software out of Objects that send Messages to each other.

anObject

anObject anObject

All the other concepts in OO are to make understanding, managing, or implementing these Object systems
easier. Two of the most important concepts are Types and Classes, but there are many other important
concepts, techniques, views, and methodologies that can help in the construction of Object software
systems. Types and Classes will be discussed next and some of the other concepts are detailed in the
Definitions chapter.

2.2 Types
Although OO systems can be built out of objects sending
messages, any significant sized system would require so many
objects that it would be impossible to understand them all
individually. To handle this problem we can consider
commonality of objects. The most important commonality to
identify is a common exterior. This is important because Objects
can have many clients (senders of messages) and a simplification
of exteriors will benefit them all as well as the implementers of the
objects.

A Type describes a common exterior of a set of Objects. A Type
makes understanding objects easier because their are much fewer
Types than Objects (objects are mostly similar to each other), and
objects can be grouped and understood by their similar behavior.
A Type defines Operations for its set of Objects. An Operation
specifies that the object has an ability to respond to a particular
message and specifies the contract/requirement for that message
(for both the sender and the receiver). An Interface is a
description of a Type that only focuses on Operations.

anObject
anObject

anObject

Type

message

anObject

operation()
operation()
operation()

5

v1.8

2.3 Classes
Where Types describe common exteriors of objects, Classes
provide a common implementation for similar objects. Classes
make it is easier to develop and manage the interiors of objects.

A Class has Methods that provide implementations for
operations. These methods are shared among all objects (called
Instances) that are implemented by that Class. A Class also has
Instance Variables, which provide a way to store encapsulated
state information for a particular object. Instance variables are
completely hidden within the Object, but they enable two objects
of the same Class to have different external Behavior.

anObject
anObject

anObjectanObject

Methods

Instance Vars

Class

2.4 Types vs. Classes
It is important to conceptually separate Classes from
Types even though it is a common (bad) practice to
use the term Class for both ideas. Types describe
common exteriors of objects, classes provide a
common implementation of objects. Neither of
these are required for OO systems (some OO
languages have one, the other, or neither), but both
can be very useful for both understanding and
managing a system’s design and implementation.

anObject
anObject

anObject

Type

message

anObject

operation()
operation()
operation() Methods

Instance Vars

Class

2.5 Java
Java supports both Types and Classes through Java interfaces and
Java classes. Java interfaces are a close equivalent to a Type:
They specify the operations an Object understands, but do not
restrict how those operations are implemented. Java interfaces
support multiple inheritance and a Java class can implement
multiple interfaces at one time.

Java classes are a Type (an exterior) combined with a Class (an
implementation): A Java class can be used to specify the
operations an object understands, but it also provides an
implementation of the operations (or restricts the implementations
to inherit from the specifying Java class). Java classes only
support single inheritance and Java interfaces can not “extend” a
Java class.

anObject
anObject

anObject

message

Methods

Instance Vars

Class

anObject

operation()
operation()
operation()

Java does not have a very sophisticated OO type model (no covariant or contravariant overrides) and Java
also incorporates many non-OO features like primitive data types and static (compile-time bound)
“methods”. These limitations and non-OO features can distract or interfere with building good OO systems,
so developers have to make extra efforts.

6 ChiMu Guidelines and Resources Chapter 2
Objects and Object-Orientation

v1.8

2.6 Other Concepts
The above is meant to be some basic definitions for OO that are very important and make understanding the
subsequent guidelines and other resources a bit easier. For more information about other important OO
concepts and more detailed explanations of the above concepts, see the references in the Guidelines,
Definitions, and the References chapters.

7

v1.8

3 Guidelines
This chapter contains guidelines that progress from very general OO guidelines to more Java specific
development guidelines. Many of these guidelines are extracted from or based on other sources and the
source to the guideline is noted immediately below the guideline or in footnotes.

3.1 Introduction
Development guidelines provide two high-level benefits: they reinforce techniques to design and code better
and they provide consistency even when there is no clear best choice. This chapter provides guideline
recommendations that focus on the first of these benefits: all of the guidelines in here are meant to help
build better software. A separate (Standards) document can then chose which of these guidelines a team
would like to use or the consistency can be more informally maintained by team interaction and code
reviews.

These guidelines are simply recommendations. A particular guideline may be extremely beneficial for some
teams and counter-productive for others. Try the guidelines out to see how well they work for your team’s
particular needs. Sometimes the guidelines conflict because they have advantages in different contexts. A
standards document would be expected to define which guidelines a team chooses, or which are acceptable
depending on the circumstance. Or the standards could be determined by the team’s experiences and
culture.

Sources of Guidelines
The guidelines documented here are summaries and extractions from more general guidelines, design
principles, methodologies, and development experiences. The following sources document these general
“software engineering” practices.

Software design and object oriented design are enormous subjects and there are numerous books and other
resources covering them. See the References chapter of this document for a good collection of sources and
the Definitions chapter for some discussions of what they focus on. The following list contains a few good
introductions to OO related design:

Object-Oriented Analysis and Design with Applications Booch 94

Designing Object-Oriented Software Wirfs-Brock+WW 90

Object-Oriented Modeling and Design Rumbaugh+BPEL 91

Design Patterns Gamma+HJV 95

Information Modeling Kilov+R 94

For Java development guidelines, we recommend the following resources from the Java, Smalltalk, and
Eiffel literature. We chose these other languages because Java is best thought of as simplified Smalltalk
with interfaces and bare-bones compile-time typing added to it. The syntax looks like ‘C’ or ‘C++’, but the
semantics are much closer to a cross between a very diluted Eiffel and Smalltalk. The literature of good
design techniques for Eiffel and Smalltalk is also more mature than Java literature.

Java Design: Building Better Apps & Applets Coad+M 96

Doug Lea’s Java coding standards Lea-1

Smalltalk Best Practice Patterns: Coding Beck 96

Code Complete McConnell 93

Object-Oriented Software Construction, 2nd Edition Meyer 97

Eiffel, The Language Meyer 92

A major part of all standards and guidelines are good definitions for terms. See the chapter “Definitions”
later in this document and the following for suggestions:

8 ChiMu Guidelines and Resources Chapter 3
Guidelines

v1.8

Directory of Object Technology Firesmith+E 95

Analysis Patterns: Reusable Object Models. Fowler 97

3.2 Overall Concepts
The following are three different perspectives on overall principles to good design and implementation for
OO. None of these are a panacea: OO is a simple concept, but good design takes lots of learning and
experience. These are meant to bring out some simple concepts that sometimes get lost.

Objects: The Core Concept of OO
The core concept of OO is that systems are built out of Objects with a clearly defined exterior and a
completely opaque implementation. Objects are just like Cells, Computer Components, and People.
Objects can only be interacted with by sending them messages, and a system performs its operations
through the behavior associated with those messages. Sometimes just remembering this core metaphor can
radically improve a design. Techniques like CRC sessions and anthropomorphizing can especially help.

Two Principles
Two important principles to consider for high-quality software development are to:

Think from the client’s point of view
Think from the maintainer’s point of view

Understanding and considering these two customers’ needs during development makes most of the
difference between poorly designed and very nicely designed systems. Object-oriented techniques can help
support both of these customers’ needs, but the principles must always be on your mind. As the developer
yourself, you will rarely forget your own needs.

Kent Beck
The following maxims are from Kent Beck’s Smalltalk Best Practice Patterns [Beck 96]. These describe
properties that should be in good OO designs and good OO code:

Once and only once In a program written with good style, everything is said once and only once.
Lots of little pieces Good code invariably has small methods and small objects.
Replaceable objects Good style leads to easily replaceable objects.
Movable objects …objects can be easily moved to new contexts.
Isolated rates of change …don’t put two rates of change together.

9

v1.8

3.3 Guidelines Summary
The following table summarizes the guidelines for easier reference

General OO Guidelines ___ 11
Types __ 11

Name Types Well__ 11
Only Expose Responsibilities___ 11

Operations __ 11
Choose Intention Revealing Operation Names______________________________________ 12
Have Uniquely Named Signatures ___ 12
Standardize Naming Patterns ___ 12
Categorize your Operations __ 13

Classes ___ 13
Methods __ 13

Compose Your Methods __ 13
Make Execution Structure Obvious __ 14

Java-Oriented Guidelines__ 14
Types, Interfaces, and Classes: Design ___ 14

Interface with Interfaces___ 14
Create Different Interfaces for Different Types of Clients_____________________________ 14
Use Interfaces over Abstract Classes ___ 14
Rarely declare a class final___ 15
Consider writing template files ___ 15

Operation and Method Design__ 15
Weave Parameters Positions into the Operation Name _______________________________ 15
Define return types as void___ 16
Avoid overloading methods on argument type______________________________________ 16
Write methods that only do “one thing”___ 16

Packages and Modularity__ 17
Have a “Pack” Class for all Packages __ 17
Use Factories for Creating Objects __ 17
Minimize * forms of import __ 17
When sensible, consider writing a main for the principal class _________________________ 17
The class with main should be separate from those containing normal classes._____________ 18

Method Implementation___ 18
Declare a local variable where you know its initial value _____________________________ 18
Use a new local variable __ 18
Assign null to any reference variable that is no longer being used_______________________ 18
Avoid assignments (``='') inside if and while conditions ______________________________ 18
Ensure that there is ultimately a catch for all unchecked exceptions _____________________ 18
Embed casts in conditionals __ 19

Documentation __ 19
Make code self documenting before commenting it__________________________________ 19
Provide comments that augment, not repeat, program code____________________________ 19
Use Interfaces for Public Documentation__ 20
Specify a standard keyword order ___ 20
Augment javadoc keywords __ 20

Class Implementation ___ 21
Never declare instance variables as public___ 21
Minimize statics ___ 21
Prefer protected to private ___ 21
Minimize reliance on implicit initializers__ 21

10 ChiMu Guidelines and Resources Chapter 3
Guidelines

v1.8

Prefer abstract methods to those with default no-op implementations ____________________ 21
Avoid giving a variable the same name as one in a superclass__________________________ 22
Use final and/or comment conventions for instance variables __________________________ 22
Avoid unnecessary instance variable access and update methods _______________________ 22
Minimize direct internal access to instance variables inside methods ____________________ 22
Ensure that non-private statics have sensible values _________________________________ 22
Consider whether any class should implement Cloneable and/or Serializable. _____________ 22
Whenever reasonable, define a default (no-argument) constructor ______________________ 23

Overriding __ 23
If you override Object.equals, also override Object.hashCode _________________________ 23
Override readObject and WriteObject if a Serializable class relies on process state _________ 23
Explicitly define clone()___ 23

Miscellaneous__ 23
Generally prefer long to int, and double to float ____________________________________ 23
Use method equals instead of operator == when comparing objects _____________________ 24
Prefer declaring arrays as Type[] arrayName rather than Type arrayName[]. ______________ 24

Concurrent Programming ___ 24
Declare all public methods as synchronized__ 24
Prefer synchronized methods to synchronized blocks.________________________________ 24
Always embed wait statements in while loops that re-wait ____________________________ 24
Use notifyAll instead of notify or resume. ___ 25
Always document the fact that a method invokes wait________________________________ 25

Methodology, Notation, and CASE Guidelines ______________________________ 25
Use UML __ 25
Go beyond UML __ 25
Use a smart drawing tool __ 25
Link your design diagrams to javadoc__ 26
Don’t draw models for everything ___ 25
Use a CASE tool __ 26
Avoid taking liberties with a CASE tool __ 26
Recognize the limits of CASE tools__ 27
Drive CASE tools from the appropriate direction ___________________________________ 27

Final Guidelines___ 27
Try it out __ 27
Prove Performance___ 27
Take out the trash__ 28
Do not require 100% conformance to rules of thumb!________________________________ 28

11

v1.8

3.4 General OO Guidelines
The following guidelines are statements of very general OO principles that provide overall guidance. These
principles should help produce more specific guidelines and can be used as the restarting point if a
particular guideline does not seem to work very well for a team.

Types
Types categorize and describe the exteriors of objects. In Java, a Type is represented as either an interface
(a pure Type) or a class (a Type combined with an implementation). This document will use the term Type
when considering the exterior properties of a class or an interface.

Name Types Well
Spend the time to name a Type correctly and concisely. The name should match the
range of usage for the Type: if it is very general, choose a very simple name; and if it is
only applicable in a specific context, qualify it to describe that limitation. Sometimes
naming a Type can be very easy because it exists as part of the business concepts (an
Employee) or part of the solution (a Window). But always make sure the name really
matches the concept. And really care about the name: “Be a poet for a moment.”*

Rationale
Type names provide the main glossary and conceptual skeleton for any OO system.

Details and Examples
You should also try names out and fix them if they don’t work well in actual use or if they do not fit well
with names in the system. This is especially valuable in the earlier stages of a project – before the team has
mentally and programmatically committed to a name.

ChiMu 97e, Beck 96

Only Expose Responsibilities
Only expose the features that you want to be responsible for. A Type provides a contract to all its
customers that it will need to maintain “for life”, so never publicly expose something you do not want to be
responsible for maintaining. Make sure all instance variables and implementation specific methods are
hidden from clients and do not become part of your responsibilities.

Rationale
This is one of the foundations of OO and software engineering.

ChiMu 97e

Operations
Operations formally define the exterior of an Object: what messages it can understand and the contract it
agrees to if you send it that message†. Operations must be understandable in the context of the current Type
(Interface or Class) and should be consistent across multiple Types. This requires continuous OO thinking,
strong efforts toward standardization, and vigilant semantic verification. There are many more operations
than their are Types, so it is a much more difficult task to name and organize them well.

* [Beck 96: Simple Superclass Name]
† [Meyer 96]

12 ChiMu Guidelines and Resources Chapter 3
Guidelines

v1.8

Choose Intention Revealing Operation Names
Choose “intention revealing operation names”* is the primary rule for naming operations.
Always create a name that suggests what the operation “provides for the caller”, not how
a method could accomplish this service.

Rationale
The clearer you describe the behavior of the operation within its name, the easier it is for the clients (who
repeatedly use those operations) to understand your class or interface. This is one of the many incarnations
of thinking from the client’s perspective.

ChiMu 97e, Beck 96

Have Uniquely Named Signatures
Ideally, make each operation have a unique name if it has different behavior or a
different number or parameters. This will allow a client to know what this particular
operation does and how many parameters it requires simply from the operation name.
Especially avoid creating operations with the same name and the same number of
arguments but different argument types.

Rationale
Otherwise, the human reader has to act like a compiler and figure out which operation (of several identically
named ones) is the proper one to call given all the variable types involved. Because this is all done at
compile-time, usually the result is not what anyone would want. See “Avoid overloading methods on
argument type” for a good example in Java.

ChiMu 97e

Standardize Naming Patterns
Standardize the vocabulary used in operation names. As much as possible, words should
be used consistently and uniquely when part of an operation.

Rationale
This makes understanding operations easier and supports precisely describing new functionality. These
benefits become especially important as a system grows.

Details and Examples
The following is an example subset of the standard meanings for operation name parts and operation
categories (see the Source code format section below).

The following are common operation prefixes
Prefixes Category Description
is, can, has, will Testing Return a Boolean and test the state of the object
new Creating Create and return a new object from a factory that

creates only a single type of object
init, setup Initializing These methods are called before you can use an

object. Only a single init function should be
called which can then be followed by whatever
setup methods you need to change the default
configuration of the object.

A few Type specific prefixes are:
find Searching Retrieve a single object or null if unsuccessful
select Searching Retrieve multiple objects or an empty collection
add Add an object to a collection

* See [Beck 96: Intention Revealing Selector] for a fuller description.

13

v1.8

Non-prefix operation name patterns
any Return any object that satisfies the request (findAny)
all Return all objects that satisfy the request (selectAll)

Within each Type or domain area (Collections, Functors, SQL, Mapping, Domain models) there will be
both reused vocabulary and new vocabulary. Try to manage these forces well.

ChiMu 97e

Categorize your Operations
Group operations into Categories and reflect those categories in your Interfaces. If a
language or tool does not support operation categories, use whatever documentation is
available (comment dividers, notes, etc.).

Rationale
By grouping operations into meaningful categories it will be easier to understand the operations and to read
the implementations. This organizational assistance is something akin to “subtyping” of operations. Some
example categories are:

Constructing A section and category. The constructors for the class.
 Initializing An additional method that should be applied directly after

constructing the object.
 Setup Methods that can optionally be applied to an object but must be

done immediately after construction and initialization and
before using the object normally.

 Validating Check whether the current object is in an acceptable state
(could also be under asking if this is possible after construction
is finishing).

Asking Asking the state of the current object without causing any
(visible) side effects. A pure function. ISE Eiffel ‘Query’.

 Testing An asking method that returns a Boolean value
These categories should align with and reinforce operation naming patterns.

ChiMu 97e

Classes
Classes provide an implementation for a Type, so they should focus on the needs of implementers and
maintainers*

Methods
Methods implement operations within a given class. As such, the rules for operations determine the name
and other externally visible properties of a method. The rest of the

Compose Your Methods
After you have defined the public operations that a class has to perform, you will need to implement those
operations with methods. Focus on communication and maintainability when implementing methods.
“Divide your program into methods that perform one identifiable task. Keep all of the operations in a
method at the same level of abstraction. This will naturally result in programs with many small methods,
each a few lines long.”†

ChiMu 97e, [Beck 96]

* If you choose to combine the two (have Classes be used as Types) then you will need to consider everyone’s needs
together
† [Beck 96: Composed Method]

14 ChiMu Guidelines and Resources Chapter 3
Guidelines

v1.8

Make Execution Structure Obvious
Try to make the execution structure of your method visible when looked at quickly. Standardize on a few
good structures so a reader will quickly be able to survey the functionality and identify where to look for
interesting features.

ChiMu 97e

3.5 Java-Oriented Guidelines
The following guidelines are more Java specific but also try to expose the general principles as much as
possible.

Types, Interfaces, and Classes: Design

Interface with Interfaces
Use interfaces as the glue throughout your code instead of classes: define interfaces to
describe the exterior of objects (i.e. their Type) and type all variables, parameters, and
return values to interfaces.

Rationale
The most important reason to do this is that interfaces focus on the client’s needs: interfaces define what
functionality a client will receive from an Object without coupling the client to the Object’s implementation.
This is one of the core concepts to OO.

Details and Examples
There are many benefits to using interfaces as the glue throughout your systems, the following are just two
of the most important benefits. First, clients will not be coupled to the specific implementation, so you can
have much more flexibility in evolving the implementation plus you can provide alternative
implementations to support proxies, tracing, and performance variations. Second, you can use multiple
inheritance among interfaces and between interfaces and classes, which can help with OO modeling and can
support different access views of the same class (see below).

Interfaces should be given no suffixes or prefixes: they have the "normal" name space. Classes are given a
suffix of "Class" if they are meant to be instantiated or are given a suffix of "AbsClass" if they are an
abstract class that provides inheritable implementation but is not complete and instantiable by itself. Java
classes then become implementations of Java interfaces and should provide no public behavior beyond the
interface itself (other than how to create and initialize an object of that class). Avoid exposing classes
except when you want to provide the ability for a client to subclass.

ChiMu 97e

Create Different Interfaces for Different Types of Clients
Provide different interfaces to support different types of clients and to prevent exposing
responsibilities to clients who should not see it.

Rationale
Provides a more understandable system for a particular client’s perspective and makes maintenance impacts
more visible.

ChiMu 97e

Use Interfaces over Abstract Classes
If you can conceive of someone else implementing a class’s functionality differently,
define an interface, not an abstract class. Generally, use abstract classes only when they

15

v1.8

are ‘‘partially abstract’’; i.e., they implement some functionality that must be shared
across all subclasses.

Rationale
Interfaces are more flexible than abstract classes. They support multiple inheritance and can be used as
‘mixins’ in otherwise unrelated classes.

Lea-1

Rarely declare a class final
Declare a class as final only if it is a subclass or implementation of a class or interface
declaring all of its non-implementation-specific methods. (And similarly for final
methods).

Rationale
Making a class final means that no one ever has a chance to reimplement functionality. Defining it instead
to be a subclass of a base that is not final means that someone at least gets a chance to subclass the base
with an alternate implementation. Which will essentially always happen in the long run.

Lea-1

Consider writing template files
Consider writing template files for the most common kinds of class files you create:
Applets, library classes, application classes.

Rationale
Simplifies conformance to coding standards.

Lea-1

Operation and Method Design
The terms “operation” and “method” are used interchangeably (when referring to external specification)
depending on who produced the guideline.

Weave Parameters Positions into the Operation Name
Put underscores "_" into operation names as placeholders for where a particular
parameter is woven into the message send. Leave off any trailing underscores.

Examples and Details
For example:

at_put(key,value)

would read as at_(first parameter)put(second parameter) or "at (key) put (value)". A second example would
be:

setIndex_to_asType(index,value,type)

or "set index (index) to (value) as type (type)". This does a good job of specifying the meaning of the
message, the number of parameters, and the specific positions of all the parameters. If you have a large
number of parameters that you do not want to specifically mention/weave into the operation name, they can
be added at the end. For example:

at_putStuff(key,value1,value2,value3)

Rationale
This improves operation/method names and helps clients know what order to put parameters into the
parenthesis.

ChiMu 97e

16 ChiMu Guidelines and Resources Chapter 3
Guidelines

v1.8

Define return types as void
Define return types as void unless they return results that are not (easily) accessible
otherwise (i.e., hardly ever write “return this”).

Rationale
While convenient, the resulting method cascades (a.meth1().meth2().meth3()) can be the sources of
synchronization problems and other failed expectations about the states of target objects.

Lea-1

Avoid overloading methods on argument type
Avoid overloading methods on argument type. (Overriding on arity is OK, as in having a
one-argument version versus a two-argument version). If you need to specialize
behavior according to the class of an argument, consider instead choosing a general type
for the nominal argument type (often Object) and using conditionals checking instanceof.
Alternatives include techniques such as double-dispatching, or often best, reformulating
methods (and/or those of their arguments) to remove dependence on exact argument
type.

Rationale
Java method resolution is static; based on the listed types, not the actual types of argument. This is
compounded in the case of non-Object types with coercion charts. In both cases, most programmers have
not committed the matching rules to memory. The results can be counterintuitive; thus the source of subtle
errors. For example, try to predict the output of this. Then compile and run.

class Classifier {
 String identify(Object x) { return "object"; }
 String identify(Integer x) { return "integer"; }
}

class Relay {
 String relay(Object obj) {
 return (new Classifier()).identify(obj);
 }
}

public class App {
 public static void main(String[] args) {
 Relay relayer = new Relay();
 Integer i = new Integer(17);
 System.out.println(relayer.relay(i));
 }
}

Lea-1

Write methods that only do “one thing”
Write methods that only do “one thing”. In particular, separate out methods that change
object state from those that just rely upon it. For a classic example in a Stack, prefer
having two methods Object top() and void removeTop() versus the single method Object
pop() that does both.

Rationale
This simplifies (sometimes, makes even possible) concurrency control and subclass-based extensions.

Lea-1

17

v1.8

Packages and Modularity

Have a “Pack” Class for all Packages
Create a Class named “<packageName>Pack” for each Java package. Put documentation
about the Package and any functionality that applies to the package as a whole into the
Pack.

Rationale
Packages are not represented in Java in any tangible manner: they are more a hierarchical naming
convention. By having a real Class for each package you have a standard place to put package
documentation and functionality. This makes understanding a package easier and can also support better
encapsulation of the package’s functionality.

ChiMu 97e

Use Factories for Creating Objects
Use Factories and Factory methods for “public” object construction: have an object be responsible for
construction instead of having clients directly call “new AClass()”.

Rationale
The reason to use factory creation methods instead of straight constructors is because they:

• Allow more flexibility in “creating” a new object: the implementation can just reuse an existing
object if the semantics make sense.

• Can have better names: “newTimeNow()” and “newTimeFromSeconds(...)” instead of “new
Time()” and “new Time(...)”

• Provide better separation between interface and implementation: we can document the factory
method in an interface

• Naturally flow into more sophisticated factory designs (See [Gamma+HJV 95])
• The implementation can take advantage of inheritance since it is a “normal” object method.

The Factory can either be an existing appropriate object (e.g. a database object is the factory for database
Tables), or a specific Factory type. For classes that have no other appropriate factory object we use the
‘Pack’ object as the factory.

ChiMu 97e

Minimize * forms of import
Minimize * forms of import. Be precise about what you are importing. Check that all
declared imports are actually used.

Rationale
Otherwise readers of your code will have a hard time understanding its context and dependencies. Some
people even prefer not using import at all (thus requiring that every class reference be fully dot-qualified),
which avoids all possible ambiguity at the expense of requiring more source code changes if package names
change.

Lea-1

When sensible, consider writing a main for the principal class
When sensible, consider writing a main for the principal class in each program file. The
main should provide a simple unit test or demo.

Rationale
Forms a basis for testing. Also provides usage examples.

Lea-1

18 ChiMu Guidelines and Resources Chapter 3
Guidelines

v1.8

The class with main should be separate from those containing normal classes.
For self-standing application programs, the class with main should be separate from
those containing normal classes.

Rationale
Hard-wiring an application program in one of its component class files hinders reuse.

Lea-1

Method Implementation

Declare a local variable where you know its initial value
Declare a local variable only at that point in the code where you know what its initial
value should be.

Rationale
Minimizes bad assumptions about values of variables.

Lea-1

Use a new local variable
Declare and initialize a new local variable rather than reusing (reassigning) an existing
one whose value happens to no longer be used at that program point.

Rationale
Minimizes bad assumptions about values of variables.

Lea-1

Assign null to any reference variable that is no longer being used
Assign null to any reference variable that is no longer being used. (This includes,
especially, elements of arrays.)

Rationale
Enables garbage collection.

Lea-1

Avoid assignments (‘‘=’’) inside if and while conditions
Avoid assignments (‘‘=’’) inside if and while conditions.

Rationale
They are almost always typos. The java compiler catches cases where ‘‘=’’ should have been ‘‘==’’ except
when the variable is a boolean.

Lea-1

Ensure that there is ultimately a catch for all unchecked exceptions
Ensure that there is ultimately a catch for all unchecked exceptions that can be dealt
with.

Rationale
Java allows you to not bother declaring or catching some common easily-handlable exceptions, for example
java.util.NoSuchElementException. Declare and catch them anyway.

Lea-1

19

v1.8

Embed casts in conditionals
Embed casts in conditionals.

Details and Examples
For example:

C cx = null;
if (x instanceof C) {
 cx = (C) x;
} else {
 evasiveAction();
}

Rationale
This forces you to consider what to do if the object is not an instance of the intended class rather than just
generating a ClassCastException.

Lea-1

Documentation

Make code self documenting before commenting it
Try to make code as self document as possible before resorting to commenting it. This
can both to improve the design and better describe an existing design than using
comments.

Rationale
Specifications and code within a programming language are always more precise and useful than comments.
If the code can describe itself better, this provides a constant reinforcement to future development (the
clients and maintainers of this code). Comments are just auxiliary information and (although useful) should
be a second choice.

ChiMu 97e, McConnell 92

Provide comments that augment, not repeat, program code
Make comments augment, not repeat, information available in Java syntax itself.

Rationale
Statements made in the programming language are precise, communicative, and guaranteed to be “true” (the
program does what it says it does). If comments repeat information already specified they provide nothing
and they are likely to become out of date and incorrect.

Details and Examples
Place the JavaDoc comments for methods immediately above and inset relative to the method declaration.
This is so it is easy to read the method declaration before reading the comment. A method should have a
good, intention revealing operator name, good parameter names, and a suitable return value type. This
implies that the declaration itself is the best first source for documentation of the public use of the method.

 /**
 * Find a person with the particular name.
 *@return null if can not find the person
 */
 public Person findName(String name);

Consider method comments to be inside and subservient to the declaration (although JavaDoc requires it to
be before the declaration).

ChiMu 97e, McConnell 92

20 ChiMu Guidelines and Resources Chapter 3
Guidelines

v1.8

Use Interfaces for Public Documentation
If you “Interface with Interfaces”, put public documentation in the Interface and
implementation documentation in the class. Do not repeat documentation between the
two files.

Rationale
Clients should only be looking at the public documentation and then the Class file can focus on
implementation needs. Repeating information just makes it likely to get out of synch.

ChiMu 97e

Specify a standard keyword order
Specify a standard keyword order for your method modifiers.

Rationale
This is mostly a programming convention, but it can help team members to quickly understand other
members programs. It can also help the mental classification of methods and reinforce other guidelines
(e.g. avoid ‘static’).

Details and Examples
The following is a suggested order. Static methods are a completely different kind of method (they are
actually statically bound functions and procedures), so this is the first qualifier mentioned. After this comes
the access control (including the comment specifying more specific access than Java currently provides).
This is followed by all the not-elsewhere-mentioned qualifiers. Finally we have the type specification.

1. [‘static’]
2. ‘public’ | ‘/*subsystem*/ public’ | ‘/*package*/ public’ | ‘/*package*/’ | ‘protected’ | ‘/*progeny*/

protected’ | ‘private’
3. [‘abstract’], [‘synchronized’], [‘final’], [‘native’], [‘transient’], [‘volatile’]
4. ‘void’ | <TypeName>

ChiMu 97e

Augment javadoc keywords
Consider augmenting standard javadoc keywords (author, version, see, param) with
additional descriptive keywords (require, ensure).

Rationale
Provides a more descriptive definition of the contract your class is providing to its clients. The compiler
and running program can not use this information (without additional tools), but it supports the human
communication among the developer, the clients, and future developers. See [Meyer 97] for the principles
behind design by contract.

Details and Examples
If you are using standard javadoc, do not use the same ‘@’ format for the new keywords (they will
disappear), but instead capitalize them with a colon. The following is an example of augmenting keywords.

 /**
 * Remove and return the top element.
 *<P>REQUIRE: notEmpty()
 *<P>ENSURE: NEW(count()) = OLD(count()) - 1
 */
 public Object pop();

ChiMu 97e

21

v1.8

Class Implementation

Never declare instance variables as public
Never declare instance variables as public.

Rationale
The standard OO reasons. Making variables public gives up control over internal class structure. Also,
methods cannot assume that variables have valid values.

Lea-1

Minimize statics
Minimize statics (except for static final constants).

Rationale
Static variables act like globals in non-OO languages. They make methods more context-dependent, hide
possible side-effects, sometimes present synchronized access problems. and are the source of fragile, non-
extensible constructions. Also, neither static variables nor methods are overridable in any useful sense in
subclasses.

Lea-1

Prefer protected to private
Generally prefer protected to private.

Rationale
Unless you have good reason for sealing-in a particular strategy for using a variable or method, you might
as well plan for change via subclassing. On the other hand, this almost always entails more work. Basing
other code in a base class around protected variables and methods is harder, since you you have to either
loosen or check assumptions about their properties. (Note that in Java, protected methods are also
accessible from unrelated classes in the same package. There is hardly every any reason to exploit this
though.)

Lea-1

Minimize reliance on implicit initializers
Minimize reliance on implicit initializers for instance variables (such as the fact that
reference variables are initialized to null).

Rationale
Minimizes initialization errors.

Lea-1

Prefer abstract methods to those with default no-op implementations
Prefer abstract methods in base classes to those with default no-op implementations.
(Also, if there is a common default implementation, consider instead writing it as a
protected method so that subclass authors can just write a one-line implementation to call
the default.)

Rationale
The Java compiler will force subclass authors to implement abstract methods, avoiding problems occurring
when they forget to do so but should have.

Lea-1

22 ChiMu Guidelines and Resources Chapter 3
Guidelines

v1.8

Avoid giving a variable the same name as one in a superclass
Avoid giving a variable the same name as one in a superclass.

Rationale
This is usually an error. If not, explain the intent.

Lea-1

Use final and/or comment conventions for instance variables
Use final and/or comment conventions to indicate whether instance variables that never
have their values changed after construction are intended to be constant (immutable) for
the lifetime of the object (versus those that just so happen not to get assigned in a class,
but could in a subclass).

Rationale
Access to immutable instance variables generally does not require any synchronization control, but others
generally do.

Lea-1

Avoid unnecessary instance variable access and update methods
Avoid unnecessary instance variable access and update methods. Write get/set-style
methods only when they are intrinsic aspects of functionality.

Rationale
Most instance variables in most classes must maintain values that are dependent on those of other instance
variables. Allowing them to be read or written in isolation makes it harder to ensure that consistent sets of
values are always used.

Lea-1

Minimize direct internal access to instance variables inside methods
Minimize direct internal access to instance variables inside methods. Use protected
access and update methods instead (or sometimes public ones if they exist anyway).

Rationale
While inconvenient and sometimes overkill, this allows you to vary synchronization and notification
policies associated with variable access and change in the class and/or its subclasses, which is otherwise a
serious impediment to extensibility in concurrent OO programming. (Note: The naming conventions for
instance variables serve as an annoying reminder of such issues.)

Lea-1

Ensure that non-private statics have sensible values
Ensure that non-private statics have sensible values even if no instances are ever created.
(Similarly ensure that static methods can be executed sensibly.) Use static intitializers
(static { ... }) if necessary.

Rationale
You cannot assume that non-private statics will be accessed only after instances are constructed.

Lea-1

Consider whether any class should implement Cloneable and/or Serializable.
Consider whether any class should implement Cloneable and/or Serializable.

23

v1.8

Rationale
These are ‘‘magic’’ interfaces in Java, that automatically add possibly-needed functionality only if so
requested.

Lea-1

Whenever reasonable, define a default (no-argument) constructor
Whenever reasonable, define a default (no-argument) constructor so objects can be
created via Class.newInstance().

Rationale
This allows classes of types unknown at compile time to be dynamically loaded and instantiated (as is done
for example when loading unknown Applets from html pages).

Lea-1

Overriding

If you override Object.equals, also override Object.hashCode
If you override Object.equals, also override Object.hashCode, and vice-versa.

Rationale
Essentially all containers and other utilities that group or compare objects in ways depending on equality
rely on hashcodes to indicate possible equality. For further guidance see Taligent’s Java Cookbook

Lea-1

Override readObject and WriteObject if a Serializable class relies on process
state

Override readObject and WriteObject if a Serializable class relies on any state that could
differ across processes, including, in particular, hashCodes and transient fields.

Rationale
Otherwise, objects of the class will not transport properly.

Lea-1

Explicitly define clone()
If you think that clone() may be called in a class you write, then explicitly define it (and
declare the class to implement Cloneable).

Rationale
The default shallow-copy version of clone might not do what you want.

Lea-1

Miscellaneous

Generally prefer long to int, and double to float
Generally prefer long to int, and double to float. But use int for compatibility with
standard Java constructs and classes (for the major example, array indexing, and all of
the things this implies, for example about maximum sizes of arrays, etc).

Rationale
Arithmetic overflow and underflow can be 4 billion times less likely with longs than ints; similarly, fewer
precision problems occur with doubles than floats. On the other hand, because of limitations in Java

24 ChiMu Guidelines and Resources Chapter 3
Guidelines

v1.8

atomicity guarantees, use of longs and doubles must be synchronized in cases where use of ints and floats
sometimes would not be.

Lea-1

Use method equals instead of operator == when comparing objects
Use method equals instead of operator == when comparing objects. In particular, do not
use == to compare Strings.

Rationale
If someone defined an equals method to compare objects, then they want you to use it. Otherwise, the
default implementation of Object.equals is just to use ==.

Lea-1

Prefer declaring arrays as Type[] arrayName rather than Type arrayName[].
Prefer declaring arrays as Type[] arrayName rather than Type arrayName[].

Rationale
The second form is just for incorrigible C programmers.

Lea-1

Concurrent Programming
Doug Lea specializes in Concurrent Programming. See his book [Lea 96] for more information on
Concurrent Programming in Java.

Declare all public methods as synchronized
Declare all public methods as synchronized; or if not, describe the assumed invocation
context and/or rationale for lack of synchronization.

Rationale
In the absence of planning out a set of concurrency control policies, declaring methods as synchronized at
least guarantees safety (although not necessarily liveness) in concurrent contexts (every Java program is
concurrent to at least some minimal extent). With full synchronization of all methods, the methods may lock
up, but the object can never enter in randomly inconsistent states (and thus engage in stupidly or even
dangerously wrong behaviors) due to concurrency conflicts. If you are worried about efficiency problems
due to synchronization, learn enough about concurrent OO programming to plan out more efficient and/or
less deadlock-prone policies.

Lea-1

Prefer synchronized methods to synchronized blocks.
Prefer synchronized methods to synchronized blocks.

Rationale
Better encapsulation; less prone to subclassing snags; can be more efficient.

Lea-1

Always embed wait statements in while loops that re-wait
Always embed wait statements in while loops that re-wait if the condition being waited
for does not hold.

Rationale
When a wait wakes up, it does not know if the condition it is waiting for is true or not.

Lea-1

25

v1.8

Use notifyAll instead of notify or resume.
Use notifyAll instead of notify or resume.

Rationale
Classes that use only notify can normally only support at most one kind of wait condition across all methods
in the class and all possible subclasses. And unguarded suspends/resumes are even more fragile.

Lea-1

Always document the fact that a method invokes wait
Always document the fact that a method invokes wait

Rationale
Clients may need to take special actions to avoid nested monitor calls.

Lea-1

3.6 Methodology, Notation, and CASE Guidelines
The following are some guidelines for working with methodologies, notations and CASE tools.

Use UML
Use UML because it is the standard for OO notation.

Rationale
With deference to all the great work by other methodologists, engineers, and “thinkers”, UML has won.
The probability that someone understands what you are doing is significantly enhanced by having a (good-
enough) core shared notation. Start with UML and then enhance it for needs it does not address.

ChiMu 97e

Go beyond UML
If UML does not express a concept well, extend it or modify it and then document how
your extension relates to UML and other methods.

Rationale
Communication is the most important part of any notation. Make sure a standard does not hinder
communicating concepts that are important to building good OO software. Although UML incorporates
several peoples’ work together, other important concepts were left out (e.g. UI, Coordinator, Entity,
Interface, Extensions, etc.) and should not be lost if they are important to your development process.

Details and Examples
UML is extendable via the stereotype functionality: you can further refine UML concepts by annotating a
UML object with a guillemot surrounded phrase («coordinator»). Further, you can then define a new icon
for the new refined concept. This, for example, allows you to use Jacobson concepts by adding «interface»,
«control», «entity» stereotypes and then using Jacobson icons for these new concepts.

ChiMu 97e

Don’t draw models for everything
Don’t draw models for everything; instead, concentrate on the key areas. It is better to
have a few diagrams that you use and keep up-to-date than to have many forgotten,
obsolete models.

Fowler 97b

26 ChiMu Guidelines and Resources Chapter 3
Guidelines

v1.8

Link your design diagrams to javadoc
If you create a diagram to explain an important concept for your design, connect the
diagram into the Javadoc documentation.

Rationale
Javadoc is THE standard reference source for Java programming, so any documentation available within it
will be much more likely to find.

Lea-2

Use a smart drawing tool
Use a smart drawing tool to make UML and other software design diagrams easier to
create and modify.

Rationale
Smart drawing tools are the first logical step for creating software models above the simplicity and
flexibility of the simple pen. They provide excellent support for creating, modifying, and printing readable
diagrams quickly through their stencils, smart line connectors, and excellent drawing capabilities. Most
smart diagram tools now have stencils for UML, Objectory, ER Diagrams, UI widgets, and many other
types of software notations. Some tools even have a simple understanding of UML notation rules.

Details
There are many smart drawing tools available, and listings of them can be found on the web at:

1. http://www.yahoo.com/Computers_and_Internet/Software/Reviews/Titles/Business/Flow_Chart/
2. http://www.yahoo.com/Business_and_Economy/Companies/Computers/Software/Graphics/
3. http://www.yahoo.com/Business_and_Economy/Companies/Computers/Software/Graphics/Flow_

Charting/
ChiMu 97e

Use a CASE tool
If your diagramming needs go beyond a smart drawing tool, carefully consider the
different CASE tools on the market and decide which (if any) meet your needs the best
compared to the drawing tools.

Rationale
For some projects, smart drawing tools will not be enough and CASE tools may be a more appropriate
solution. Smart drawing tools are very powerful but they do not understand the meaning of what they
portray. This restricts their abilities to:

4. Guide/enforce the user to create correct diagrams
5. Update changes between different diagrams
6. Support creating new diagrams based on the existing knowledge
7. Create automatic reports
8. Forward generate to code

All of these items might be useful for the project team to maintain its models. Be aware that all tools that
are smarter are also less flexible and are never “smart enough”, so you need to make a very careful
consideration of the tradeoffs with each tool and which of the above items are actually useful (in practice) to
your project.

ChiMu 97e

Avoid taking liberties with a CASE tool
Avoid taking liberties with a CASE tool or using it as a general diagramming tool.

27

v1.8

Rationale
All CASE tool diagrams impact the conceptual model in the “repository”, and if even one diagram is done
strangely/loosely that model will be damaged. This could prevent others from understanding the model, or
lead to a severe misunderstanding of the model. Make sure the repository is correct from all views.

Details
It is better to capture information that the CASE tool can not in a different (external to the tool) form. Put
as much in the tool as possible and then organize and refer to this external information.

ChiMu 97e

Recognize the limits of CASE tools
Make sure you recognize what a CASE tool prevents you from expressing and determine
when that is and is not acceptable. Use hand drawings, drawing tools, or just text when
you your CASE tool would hinder important communication.

Rationale
CASE tools provide many benefits but they can sometimes interfere with the goal of good communication.
No CASE tool can completely support all of UML, let alone all the useful ways to communicate precisely.
The communication is more important than the tool.

ChiMu 97e

Drive CASE tools from the appropriate direction
Drive CASE tools from the appropriate direction. Before a significant amount of code is
written, CASE tools can be driven forward (requirements to analysis to design to
implementation). After code exists, drive design information from the code.

Rationale
The forward direction is the ideal, but a CASE repository is of no use later in a project if it does not reflect
reality. Code is the reality; so CASE information must be generated from the code. The changes can then
be reviewed as part of code review and acceptance. Previous designs can be kept as snapshots and new
future designs can again drive code changes.

ChiMu 97e

3.7 Final Guidelines

Try it out
Live with a guideline for a while before deciding to scrap or change it. Let the goals of a
guideline grow into your habits so you fully understand its value to you.

Rationale
Only by trying a guideline can you really understand how and whether it benefits you.

ChiMu 97e

Prove Performance
Do not sacrifice a guideline for performance reasons until you see the profiling numbers.
Only optimize when it will quantifiably be worth the maintenance penalty.

Rationale
Optimization is always harmful and rarely beneficial unless you have numbers to back it up. A better
design (which these guideline try to encourage) will allow more precise and effective optimizations later
when the numbers come in.

ChiMu 97e

28 ChiMu Guidelines and Resources Chapter 3
Guidelines

v1.8

Take out the trash
If a standard does not work for your team, create a new one or let the issue be context
and programmer dependent until a new standard emerges.

Rationale
Having standards that interfere with good system design is worse than no standard at all.

ChiMu 97e

Do not require 100% conformance to rules of thumb!
Do not require 100% conformance to rules of thumb such as the ones listed here!

Rationale
Java allows you program in ways that do not conform to these rules for good reason. Sometimes they
provide the only reasonable ways to implement things. And some of these rules make programs less
efficient than they might otherwise be, so are meant to be conscientiously broken when performance is an
issue.

Lea-1

29

v1.8

4 Definitions
Having a common glossary of terms is important for accurate, precise, and concise communication among
team members. The following definitions are ChiMu’s distilling and reconciliation of the many great
concepts and work that have been contributed to OO*. Many of the sources for these terms are mentioned
in the References section of this document. A few particular notable sources are:

The Dictionary of Object Technology [Firesmith+E 95].
UML: The Unified Modeling Language [Rational 98]
Design Patterns, especially [Gamma+HJV 96]

4.1 Categorized
The following sections categorize definitions by starting with the core OO concepts (Objects) and growing
to more domain-specific definitions.

Object
The core concept to OO is Objects. Everything else in OO is to make understanding, managing, or
implementing Objects easier. The definition of Object is the foundation for all other definitions.

Definitions

Object An identifiable, encapsulated entity that can only be interacted with by sending
messages.

Message A stimulus sent to an object with a name and any parameters (as Objects) that the
message requires. A message will cause the receiver Object to return an answer
or nothing. In most Object Languages, the sender has to wait for the answer
before continuing.

Identity The ability to tell one object from another object independently of whether their
appearance (behavior) is identical.

Behavior The response of an object to a stimulus. An object’s behavior is the answers it
gives to messages both now and in the future. (See State).

State An abstraction to describe and simplify understanding an object’s behavior. An
object’s behavior can be described as the answers it gives to current messages
(which are determined by the current state) and the changes to its state caused by
these messages.

More Information
The best source for the concept of Object is Alan Kay’s writings [Kay 95] and Smalltalk itself [Goldberg+R
83, Squeak]. You could also look at Simula (the progenitor of Smalltalk), but it has other concepts mixed
into the language besides Objects. Some methodologies focus on Objects more than others [Wirfs-
Brock+WW 90, Wilkinson 95], but all of the main OO methodology books (e.g. [Booch 95,
Rumbaugh+BPEL 91, Jacobson+CJO 92]) have objects at the core.

Type
Types allow you to think about the commonality of objects’ exteriors. They are the first conceptual
abstraction above Objects and immediately provide an enormous amount of ability to reasoning about

* Fortunately, during the last few years a lot of unification has occurred and reconciling differences is less difficult.

30 ChiMu Guidelines and Resources Chapter 4
Definitions

v1.8

Objects. The amount of abstraction and formality associated with Types can depend on of the project or the
current perspective.

Definitions

Type Describes a common exterior (public behavior) of a set of Objects. Can also be
used to conceptually group and understand objects by their similar behavior.

Operation A description of the ability for an object to respond to a particular message and the
contract/requirement for that message.

Interface A description of a Type focused on the Operations that the objects can respond to.

Is-A An object is a Type if an Object supports all the exterior requirements of that
Type.

Extend To define a new Type (called a Subtype) in terms of an existing type (called a
Supertype). The new Subtype will have the same contract (operations) as the
Supertype but can add new functionality: as either new operations or
enhancement in capability to existing operations.

Subtype A Type that extends another Type (called the Supertype).

Supertype A Type that has been extended by another Type.

More Information
Many methodologies and authors do not make a clear distinction between Type and Class (usually referring
to both a “Class” and the context determines what was really meant), so this can cause confusion. The
following discuss Types independently of Classes [Kilov+R 94, Fowler 97, Jacobson+CJO 92, Cook+D
94], but all of the main methodology books do focus on Types during analysis [Booch 94, Fowler 97,
Rumbaugh+BPEL 91]. The description of contracts and interfaces in [Meyer 97] is the standard and an
excellent reference on formal Types and their integration into OOP (but you have to be willing to accept
many differences in terminology). Java supports the separation of Type from Class through interfaces and
classes, see [Coad+M 96, Gosling+JS 96].

Class
Classes provide a common implementation for similar objects. They describe the interior of objects so it is
easier to work with many objects of many different Types. It is important to conceptually separate Classes
from Types even though it is a common (bad) practice to use Class for both ideas.

Definitions

Class Provides a common implementation for a set of objects.

Method An implementation of an operation for a particular object/class.

Instance
Variable

A way to store encapsulated state information for a particular object. Instance
variables are completely hidden within the Object, but they enable two objects
of the same Class to have different external Behavior.

Instance An object is an Instance of a Type if an object supports all the exterior
requirements of that type (see “Is-A”). An object is an instance of a Class if it is
implemented by that class.

Extent The collection of all instances of a Type or Class.

Inherit To define a new Class in terms of an Existing Class (the Superclass) by starting
with the Superclass’s implementation and overiding or adding to it.

31

v1.8

More Information
All the methodologies focus on Classes, so any of them would be good for more information. Many are bad
at separating the concept of Class from Type (see above under “Type”). Class is the most common term in
OO Design and Analysis

Relationship Modeling
The above Type and Class concepts are just the beginning of the tools that can be used to reason about and
implement objects. Relationship Modeling adds on the ability to describe relationships among Objects and
Types of Objects.

Definitions

Link A connection between two objects which allows one or both to know about the
other object. By default links are assumed to be bidirectional in analysis, but
they can be defined to be only traversable in one direction.

Traverse To move from one object to another by a Link. If a Link is traversable from an
Object than that Object can get to (knows about) the other Object.

Association1 A relationship between two Types that allows or requires Objects of those Types
to be Linked.

Role The name of the “position” within a relationship an Object or Type holds. For
example, a binary association has two roles that distinguish the two participants
in the relationship.

Association2 An Association1, but must be between Types which have Objects with Identity.
See Attribute and ValueObject.

ValueObject An object that does not have identity independent of its value. A ValueObject is
immutable and should be considered identical to anything that it is equal to.
Primitive data types in Smalltalk (most numbers, Symbols) are ValueObjects.
Java Strings are very close to ValueObjects except they are not guaranteed to be
identical for the same value (they would be if they did an automatic “intern()”).
Java primitive types are not Objects.

Immutable Can not be changed after being created. Immutable objects can not be changed
after they are created and fully initialized.

Attribute1 A public property of an object that shows an aspect of the state of the object.
Frequently there is a minimal collection of attributes that uniquely determine the
state of the object. See also Property.

Attribute2 See BasicAttribute.

Attribute3 See Instance Variable.

BasicAttribute An Attribute1 that takes its value from ValueObjects. This is as opposed to
associations, which connect two or more objects with identity. A BasicAttribute
is traversable only from the Object to the ValueObject.

Property Synonym for Attribute1 and sometimes for Attribute2.

Feature The Eiffel term for Operation where Operation includes both methods and
attributes1.

32 ChiMu Guidelines and Resources Chapter 4
Definitions

v1.8

More Information
UML [Fowler 97, Rational 98] is now the primary source for the base concepts of Relationship Modeling in
OO. More detailed modeling is done in other methods (for example, see [Kilov+R 95]). Many sources
provide concepts for and examples of relationship modeling in particular domain areas (see the Patterns
references). The biggest problem with Relationship modeling terminology is the overloaded and fuzzy
meaning of “attribute”, so be careful to consider what meaning was intended in a given context.

Patterns
The following list has definitions for terms that were codified into OO language through well-known Design
Patterns. There are many more Patterns than the following definitions, but these are among the most
common and accepted terms.

Definitions

Adapter An object that can convert an Interface of one Class to the interface another Object
expects.

Factory An object that can create other objects.

Functor An object that models an operation.

Observable An object that can be Observed. See Observer.

Observer An object that “looks at” another object (the Observable) and can respond to
events in the Observable without the Observable being knowledgeable about the
Observer.

Prototype An object that is used as a template for creating other Objects.

Proxy An object that stands in for another object (the RealObject) and manages the client
interaction with the RealObject.

Singleton An object that is the only instance of a Class.

Strategy An object that encapsulates an algorithm to be used with an Object.

Visitor An object that represents an operation that can be performed on the elements of an
Object structure (frequently a hierarchy or sequence).

More Information
See [Gamma+HJV 96] for the full patterns to most of these definitions. Some definitions may also be
covered in other Pattern resources and Patterns are frequently the source of new terminology.

Pattern: Proxy
The Proxy pattern is important to Information Systems, so the following provides some more details.

Definitions

Proxy An object that stands in for another object (the RealObject) and manages the client
interaction with the RealObject.

Forwarder A proxy which immediately forwards messages, possibly over process and
machine boundaries, to the RealSubject.

Replicate A proxy which holds local state and performs local operations which are later
propagated to the RealSubject

Stub A proxy which acts as a placeholder for the RealObject and must become another
type of proxy (for example, forwarder or replicate) when interacted with by a

33

v1.8

client.

RealIdentity The identity of the RealObject that a proxy represents instead of the proxy’s
independent identity. For proxies we are rarely interested in their own identity,
we just want to know the identity of the RealObject on the server.

IdentityKey A value that defines the RealIdentity of a Proxy.

Binding Associating a client object to a database object, which turns the client object into a
Proxy

More Information
See [Gamma+HJV 96] for the basic proxy concept. See information on distributed processing (e.g.
[GemStone 95]) and Object-Relational Mapping (e.g. [Fussell 96, Fussell 97a]) for details on the Proxy
variations.

Pattern: Functor
The Functor pattern is common to all types of OO Systems. The following provide some more definitions.

Definitions

Functor “An object that models an operation” [Firesmith+E 95]. For a Java
implementation, a basic functor is an Interface with a single, generic, operation.

Proceduref A functor that does not return a value

Functionf A functor that returns an Object

Predicatef A functor that returns a boolean

Getterf A functor that is designed to retrieve a value from an object (the first parameter)

Setterf A functor that stores into an object (the first parameter) a value (the second
parameter)

More Information
Note that almost all of the definitions above also have a more general meaning, so to be specific you would
need to append “Functor” to the end to be precise (e.g. “a Predicate Functor is a functor that returns a
boolean”)

Architecture
The following terms are related to system architecture.

Definitions

Architecture A system’s concepts, structures, and interactions. Also, the description of a
system’s desired architecture before construction.

Framework A strong partition of generalized functionality common to many parts of an
application. Also, more formally, a collection of interacting classes that
describes most of the behavior a client requires and can be subclassed and
parameterized to customize and complete the functionality.

Layer A logical, horizontal division of a system that provides a particular system
abstraction to the client above the layer.

Module A base level subsystem: one which does not contain any other subsystems

34 ChiMu Guidelines and Resources Chapter 4
Definitions

v1.8

Partition A vertical division of a system into areas of related functionality.

Subsystem A division of a system into a cohesive unit of functionality (tightly related classes
and internal subsystems) with a public interface and a private implementation.

Tier A level on a hierarchy of processes over which a system is divided.

More Information
See the resources under Architecture (e.g. [Shaw+G 96, Fussell 96]) and also some of the large-picture
methodology and project-management books (e.g. [Booch 96, Jacobson+CJO 92]).

Object-Oriented Information Systems
Object-Oriented Information Systems use Objects (called DomainObjects, BusinessObjects, or
EntityObjects) to capture the knowledge, operations, and rules about a business within a computer.

Definitions

ObjectBase .An ObjectBase captures the knowledge, operations, and rules required to usefully
represent a particular part of the world in a computer. An ObjectBase contains
all the objects that represent a particular state of your DomainModel and all the
knowledge contained therein. Also called an ObjectSpace.

DomainModel All the static rules, constraints, and operations that apply to DomainObjects. The
DomainModel can either be conceptual to help understand the behavior of
DomainObjects or it can be implemented as DomainClasses.

DomainObject An object which captures knowledge about a domain. DomainObjects allow a
computer to inspect, imply, modify, and “reason” about that information in
either very simple ways (the facts) or more complex ways (the rules and
implications).

More Information
See [Fussell 96].

Other Terms
The following are some currently unclassified terms.

Definitions

Registry An object that remembers other objects and can search through and retrieve them
through one or more properties. Usually the objects within a Registry are all of
the same type.

Container A Registry but without the implication of a primary registration property (e.g. a
“key”).

ExtentRegistry A Registry that contains all the objects of a Type (the Extent of the Type). An
ExtentRegistry is a close equivalent to a RelVar or Table in the context of
Objects.

ObjectShadow The information needed to see that an object exists without any true representation
of the real object. Relational databases could be considered to work with
ObjectShadows: they record the information about an object but never have a
real object to interact with.

35

v1.8

Java Terms
The following terms are very common in Java and not mentioned elsewhere.

Definitions

Bean An Object that knows about its own properties (can introspect) and has several
other capabilities. Any Java Object can be a Bean but some Objects have more
Bean functionality.

More Information
See the Java JDKs and information

36 ChiMu Guidelines and Resources Chapter 4
Definitions

v1.8

4.2 Alphabetical
The following table contains all the previous mentioned definitions combined and sorted alphabetically.

Adapter An object that can convert an Interface of one Class to the interface another Object expects.
Architecture A system’s concepts, structures, and interactions. Also, the description of a system’s

desired architecture before construction.
Association1 A relationship between two Types that allows or requires Objects of those Types to be

Linked.
Association2 An Association1, but must be between Types which have Objects with Identity. See

Attribute and ValueObject.
Attribute1 A public property of an object that shows an aspect of the state of the object. Frequently

there is a minimal collection of attributes that uniquely determine the state of the object.
See also Property.

Attribute2 See BasicAttribute.
Attribute3 See Instance Variable.
BasicAttribute An Attribute1 that takes its value from ValueObjects. This is as opposed to associations,

which connect two or more objects with identity. A BasicAttribute is traversable only
from the Object to the ValueObject.

Bean An Object that knows about its own properties (can introspect) and has several other
capabilities. Any Java Object can be a Bean but some Objects have more Bean
functionality.

Behavior The response of an object to a stimulus. An object’s behavior is the answers it gives to
messages both now and in the future. (See State).

Binding Associating a client object to a database object, which turns the client object into a Proxy
Class Provides a common implementation for a set of objects.
Container A Registry but without the implication of a primary registration property (e.g. a “key”).
DomainModel All the static rules, constraints, and operations that apply to DomainObjects. The

DomainModel can either be conceptual to help understand the behavior of
DomainObjects or it can be implemented as DomainClasses.

DomainObject An object which captures knowledge about a domain. DomainObjects allow a computer to
inspect, imply, modify, and “reason” about that information in either very simple ways
(the facts) or more complex ways (the rules and implications).

Extend To define a new Type (called a Subtype) in terms of an existing type (called a Supertype).
The new Subtype will have the same contract (operations) as the Supertype but can add
new functionality: as either new operations or enhancement in capability to existing
operations.

Extent The collection of all instances of a Type or Class.
ExtentRegistry A Registry that contains all the objects of a Type (the Extent of the Type). An

ExtentRegistry is a close equivalent to a RelVar or Table in the context of Objects.
Factory An object that can create other objects.
Feature The Eiffel term for Operation where Operation includes both methods and attributes1.
Forwarder A proxy which immediately forwards messages, possibly over process and machine

boundaries, to the RealSubject.
Framework A strong partition of generalized functionality common to many parts of an application.

Also, more formally, a collection of interacting classes that describes most of the
behavior a client requires and can be subclassed and parameterized to customize and
complete the functionality.

Functionf A functor that returns an Object
Functor An object that models an operation.
Functor “An object that models an operation” [Firesmith+E 95]. For a Java implementation, a basic

functor is an Interface with a single, generic, operation.
Getterf A functor that is designed to retrieve a value from an object (the first parameter)
Identity The ability to tell one object from another object independently of whether their appearance

(behavior) is identical.
IdentityKey A value that defines the RealIdentity of a Proxy.
Immutable Can not be changed after being created. Immutable objects can not be changed after they

are created and fully initialized.
Inherit To define a new Class in terms of an Existing Class (the Superclass) by starting with the

Superclass’s implementation and overiding or adding to it.
Instance An object is an Instance of a Type if an object supports all the exterior requirements of that

37

v1.8

type (see “Is-A”). An object is an instance of a Class if it is implemented by that class.
Instance Variable A way to store encapsulated state information for a particular object. Instance variables are

completely hidden within the Object, but they enable two objects of the same Class to
have different external Behavior.

Interface A description of a Type focused on the Operations that the objects can respond to.
Is-A An object is a Type if an Object supports all the exterior requirements of that Type.
Layer A logical, horizontal division of a system that provides a particular system abstraction to

the client above the layer.
Link A connection between two objects which allows one or both to know about the other

object. By default links are assumed to be bidirectional in analysis, but they can be
defined to be only traversable in one direction.

Message A stimulus sent to an object with a name and any parameters (as Objects) that the message
requires. A message will cause the receiver Object to return an answer or nothing. In
most Object Languages, the sender has to wait for the answer before continuing.

Method An implementation of an operation for a particular object/class.
Module A base level subsystem: one which does not contain any other subsystems
Object An identifiable, encapsulated entity that can only be interacted with by sending messages.
ObjectBase .An ObjectBase captures the knowledge, operations, and rules required to usefully

represent a particular part of the world in a computer. An ObjectBase contains all the
objects that represent a particular state of your DomainModel and all the knowledge
contained therein. Also called an ObjectSpace.

ObjectShadow The information needed to see that an object exists without any true representation of the
real object. Relational databases could be considered to work with ObjectShadows:
they record the information about an object but never have a real object to interact with.

Observable An object that can be Observed. See Observer.
Observer An object that “looks at” another object (the Observable) and can respond to events in the

Observable without the Observable being knowledgeable about the Observer.
Operation A description of the ability for an object to respond to a particular message and the

contract/requirement for that message.
Partition A vertical division of a system into areas of related functionality.
Predicatef A functor that returns a boolean
Proceduref A functor that does not return a value
Property Synonym for Attribute1 and sometimes for Attribute2.
Prototype An object that is used as a template for creating other Objects.
Proxy An object that stands in for another object (the RealObject) and manages the client

interaction with the RealObject.
Proxy An object that stands in for another object (the RealObject) and manages the client

interaction with the RealObject.
RealIdentity The identity of the RealObject that a proxy represents instead of the proxy’s independent

identity. For proxies we are rarely interested in their own identity, we just want to
know the identity of the RealObject on the server.

Registry An object that remembers other objects and can search through and retrieve them through
one or more properties. Usually the objects within a Registry are all of the same type.

Replicate A proxy which holds local state and performs local operations which are later propagated
to the RealSubject

Role The name of the “position” within a relationship an Object or Type holds. For example, a
binary association has two roles that distinguish the two participants in the relationship.

Setterf A functor that stores into an object (the first parameter) a value (the second parameter)
Singleton An object that is the only instance of a Class.
State An abstraction to describe and simplify understanding an object’s behavior. An object’s

behavior can be described as the answers it gives to current messages (which are
determined by the current state) and the changes to its state caused by these messages.

Strategy An object that encapsulates an algorithm to be used with an Object.
Stub A proxy which acts as a placeholder for the RealObject and must become another type of

proxy (for example, forwarder or replicate) when interacted with by a client.
Subsystem A division of a system into a cohesive unit of functionality (tightly related classes and

internal subsystems) with a public interface and a private implementation.
Subtype A Type that extends another Type (called the Supertype).
Supertype A Type that has been extended by another Type.
Tier A level on a hierarchy of processes over which a system is divided.
Traverse To move from one object to another by a Link. If a Link is traversable from an Object than

that Object can get to (knows about) the other Object.

38 ChiMu Guidelines and Resources Chapter 4
Definitions

v1.8

Type Describes a common exterior (public behavior) of a set of Objects. Can also be used to
conceptually group and understand objects by their similar behavior.

ValueObject An object that does not have identity independent of its value. A ValueObject is
immutable and should be considered identical to anything that it is equal to. Primitive
data types in Smalltalk (most numbers, Symbols) are ValueObjects. Java Strings are
very close to ValueObjects except they are not guaranteed to be identical for the same
value (they would be if they did an automatic “intern()”). Java primitive types are not
Objects.

Visitor An object that represents an operation that can be performed on the elements of an Object
structure (frequently a hierarchy or sequence).

39

v1.8

5 Reading and References

5.1 Categorized Reading

Architecture
System Architecting: Creating and Building Complex Systems Rechtin 91

“Software Architecture Bibliography” SEI

Software Architecture Shaw+G 96

Software Architecture and Design: Principles, Models, and
Method.

Witt+BM 94

Information Modeling
Information Modeling: An Object-Oriented Approach. Kilov+R 94

An Introduction to Database Systems. Date 95

The Relational Model for Database Management, Version 2. Codd 90

The Object Database Standard: ODMG 2.0. Cattell+D 97

Object-Oriented Analysis and Design with Applications. Booch 94

Object-Oriented Modeling and Design. Rumbaugh+BPEL 91

Analysis Patterns: Reusable Object Models. Fowler 97

Modern Database Systems: The Object Model,
Interoperability, and Beyond

Kim 95

Relational Modeling and Databases
An Introduction to Database Systems. Date 95

The Relational Model for Database Management, Version 2. Codd 90

Relational Database: Selected Writing Date 86

Relational Database Writings, 1985-1989 Date 90

Relational Database Writings, 1989-1991 Date 92

Relational Database Writings, 1991-1994 Date 95b

A Guide to The SQL Standard Date+D 97

Object-Oriented Design and Analysis
Object-Oriented Analysis and Design with Applications Booch 94

Java Design: Building Better Apps & Applets Coad+M 96

Designing Object Systems: Object-Oriented Modeling with
Syntropy

Cook+D 94

Dictionary of Object Technology: The Definitive Desk
Reference.

Firesmith+E 95

Design Patterns: Elements of Object-Oriented Architecture. Gamma+HJV 95

Object-Oriented Software Engineering: A Use Case Driven
Approach.

Jacobson+CJO 92

The Art of the Metaobject Protocol. Kiczales+RB 91

Object Oriented Software Construction, 2nd Edition. Meyer 97

40 ChiMu Guidelines and Resources Chapter 5
Reading and References

v1.8

Object-Oriented Modeling and Design. Rumbaugh+BPEL 91

Designing Object-Oriented Software Wirfs-Brock+WW 90

UML
UML Distilled: Applying the Standard Object Modeling

Language
Fowler 97

Understanding UML: The Developer’s Guide Harmon+W 98

Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design

Larman 97

UML: Unified Modeling Language, Version 1.1 Rational 98

CRC
Using CRC Cards: An Informal Approach to Object-Oriented

Development
Wilkinson 95

The CRC Card Book Bellin+S 97

Designing Object-Oriented Software Wirfs-Brock+WW 90

Patterns
Design Patterns: Elements of Object-Oriented Architecture Gamma+HJV 95

Pattern Languages of Program Design Coplien+S 95

Pattern Languages of Program Design 2. Vlissides+CK 96

Pattern Languages of Program Design 3 Martin+RB 98

A System of Patterns: Pattern-Oriented Software ArchitectureBuschmann+MRSS 96

CORBA Design Patterns. Mowbray+M 97

Analysis Patterns: Reusable Object Models. Fowler 97

Object-Oriented Programming and Languages
History of Programming Languages – II. Bergin+G 96

Smalltalk-80: The Language and its Implementation. Goldberg+R 83

The JavaTM Language Specification. Gosling+JS 96

Eiffel, The Language Meyer 92

Object Oriented Software Construction, 2nd Edition. Meyer 97

Object-Oriented Programming: The CLOS Perspective. Paepcke 93

LISP. Winston+H 81

Structure and Interpretation of Computer Programs. Abelson+S 96

Smalltalk Best Practice Patterns, Volume 1: Coding Beck 96

Programming
Structure and Interpretation of Computer Programs. Abelson+S 96

Code Complete: A Practical Handbook of Software
Construction

McConnell 93

Project Management
Object Solutions: Managing the Object-Oriented Project Booch 96

41

v1.8

The Mythical Man-Month Brooks 75

Constantine on Peopleware Constantine 95

201 Principles of Software Development Davis 95

Controlling Software Projects DeMarco 82

Peopleware: Productive Projects and Teams DeMarco+L 87

Managing the Software Process Humphrey 89

Managing Technical People Humphrey 97

Debugging the Development Process Maguire 94

Dynamics of Software Development McCarthy 95

Rapid Development McConnell 96

Software Project Survival Guide McConnell 98

How to Run Successful Projects O’Connell 94

Pitfalls of Object-Oriented Development Webster 95

Client/Server Systems
Distributed Object-Oriented Data-Systems Design Andleigh+G 92

CORBA: A Guide to the Common Object Request Broker
Architecture

Ben-Natan 95

Client/Server Architecture Berson 92

Firewalls and Internet Security Cheswick+B 94

Distributed Systems: Concepts and Design Coulouris+DK 94

CORBA Design Patterns. Mowbray+M 97

Inside CORBA: Distributed Object Standards and Applications Mowbray+R 97

Distributed Systems Mullender 93

Essential Client/Server Survival Guide Orfali+HE 94

Introduction to Client/Server Systems: A Practical Guide for
Systems Professionals

Renaud 93

Enterprise Computing with Objects: From Client/Server
Environments to the Internet. .

Shan+E 98

UI: Human Factors
Proceeding of CHI, 1985-98 ACM-CHI

Readings in Human-Computer Interaction: A Multidisciplinary
Approach

Baecker+B 87

Reading in Human-Computer Interaction: Toward the Year
2000

Baecker+GBG 95

User Interface Design Cox+W 93

Computers as Theatre Laurel 91

The Elements of User Interface Design Mandel 97

Designing Visual Interfaces: Communication Oriented
Techniques

Mullet+S 95

Usability Engineering Nielsen 93

The Design of Everyday Things Norman 88

Turn Signals Are the Facial Expressions of Automobiles Norman 92

User Centered System Design Norman+D 86

42 ChiMu Guidelines and Resources Chapter 5
Reading and References

v1.8

Designing the User Interface: Strategies for Effective Human-
Computer Interaction

Shneiderman 98

TOG on Interface Tognazzini 92

UI: Specific Guidelines
Macintosh Human Interface Guidelines Apple 92

Inside Taligent Technology Cotter+P 95

User-Interface Screen Design Galitz 93

PenPoint User Interface Design Reference GO 91

Object-Oriented Interface Design: IBM Common User Access
Guidelines

IBM 89

NeXTSTEP User Interface Guidelines NeXT 90

UI: Programming Concepts
Object Oriented Application Frameworks Lewis 96

The Smalltalk Developer’s Guide to VisualWorks Howard 95

Hyptertext and WWW Design
Looking Good Online Bain+G 96

Making Hypermedia Work: A User’s Guide to HyTime. DeRose+D 94

Literary Machines Nelson 81

Multimedia and Hypermedia Nielsen 90

Multimedia and Hypertext: The Internet and Beyond Nielsen 95

Deconstructing Web Graphics Weinman 96

Document Modeling
Developing SGML DTDs: From Text to Model to Markup. Maler+A 96

The SGML Handbook. Goldfarb 90

LaTeX: A Document Preparation System Lamport 86

The TeXbook Knuth 84

43

v1.8

5.2 By Title
201 Principles of Software Development Davis 95

A Guide to The SQL Standard Date+D 97

A System of Patterns: Pattern-Oriented Software Architecture Buschmann+MRSS 96

An Introduction to Database Systems. Date 95

Analysis Patterns: Reusable Object Models. Fowler 97

Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design

Larman 97

Art of the Metaobject Protocol. Kiczales+RB 91

Client/Server Architecture Berson 92

Code Complete: A Practical Handbook of Software Construction McConnell 93

Constantine on Peopleware Constantine 95

Controlling Software Projects DeMarco 82

CORBA Design Patterns. Mowbray+M 97

CORBA: A Guide to the Common Object Request Broker Architecture Ben-Natan 95

CRC Card Book Bellin+S 97

Database Security Castano+FMS 95

Debugging the Development Process Maguire 94

Design Patterns: Elements of Object-Oriented Architecture Gamma+HJV 95

Designing Object Systems: Object-Oriented Modeling with Syntropy Cook+D 94

Designing Object-Oriented Software Wirfs-Brock+WW 90

Developing SGML DTDs: From Text to Model to Markup. Maler+A 96

Dictionary of Object Technology: The Definitive Desk Reference. Firesmith+E 95

Distributed Object-Oriented Data-Systems Design Andleigh+G 92

Distributed Systems Mullender 93

Distributed Systems: Concepts and Design Coulouris+DK 94

Dynamics of Software Development McCarthy 95

Eiffel, The Language Meyer 92

The Elements of User Interface Design Mandel 97
Enterprise Computing with Objects: From Client/Server

Environments to the Internet. .
Shan+E 98

Essential Client/Server Survival Guide Orfali+HE 94

Firewalls and Internet Security Cheswick+B 94

History of Programming Languages – II. Bergin+G 96

How to Run Successful Projects O’Connell 94

Information Modeling: An Object-Oriented Approach. Kilov+R 94

Inside CORBA: Distributed Object Standards and Applications Mowbray+R 97

Introduction to Client/Server Systems: A Practical Guide for Systems
Professionals

Renaud 93

Java Design: Building Better Apps & Applets Coad+M 96

JavaTM Language Specification. Gosling+JS 96

LaTeX: A Document Preparation System Lamport 86

LISP. Winston+H 81

Literary Machines Nelson 81

Making Hypermedia Work: A User’s Guide to HyTime. DeRose+D 94

Managing Technical People Humphrey 97

Managing the Software Process Humphrey 89

Modern Database Systems: The Object Model, Interoperability, andKim 95

44 ChiMu Guidelines and Resources Chapter 5
Reading and References

v1.8

Beyond

Object Database Standard: ODMG 2.0. Cattell+D 97

Object Oriented Software Construction, 2nd Edition. Meyer 97

Object Solutions: Managing the Object-Oriented Project Booch 96

Object-Oriented Analysis and Design with Applications. Booch 94

Object-Oriented Modeling and Design. Rumbaugh+BPEL 91

Object-Oriented Programming: The CLOS Perspective. Paepcke 93

Object-Oriented Software Engineering: A Use Case Driven
Approach.

Jacobson+CJO 92

Pattern Languages of Program Design Coplien+S 95

Pattern Languages of Program Design 2 Vlissides+CK 96

Pattern Languages of Program Design 3 Martin+RB 98

Peopleware: Productive Projects and Teams DeMarco+L 87

Pitfalls of Object-Oriented Development Webster 95

Rapid Development McConnell 96

Relational Database Writings, 1985-1989 Date 90

Relational Database Writings, 1989-1991 Date 92

Relational Database Writings, 1991-1994 Date 95b

Relational Database: Selected Writing Date 86

Relational Model for Database Management, Version 2. Codd 90

SGML Handbook. Goldfarb 90

Smalltalk Best Practice Patterns, Volume 1: Coding Beck 96

Smalltalk-80: The Language and its Implementation. Goldberg+R 83

Software Architecture Shaw+G 96

Software Architecture and Design: Principles, Models, and Method. Witt+BM 94

Software Architecture Bibliography SEI

Software Project Survival Guide McConnell 98

Software Reuse: Architecture, Process and Organization for Business
Success

Jacobson+GJ 97

Structure and Interpretation of Computer Programs. Abelson+S 96

System Architecting: Creating and Building Complex Systems Rechtin 91

TeXbook Knuth 84

The Object Advantage: Business Process Reengineering with Object
Technology

Jacobson+EJ 95

UML Distilled: Applying the Standard Object Modeling Language Fowler 97

UML: Unified Modeling Language, Version 1.1 Rational 98

Understanding UML: The Developer’s Guide Harmon+W 98

Using CRC Cards: An Informal Approach to Object-Oriented
Development

Wilkinson 95

45

v1.8

5.3 References
Abelson+S 96 Harold Abelson and Gerald Jay Sussman, with Julie Sussman. Structure and

Interpretation of Computer Programs. MIT Press, Cambridge, MA,
1996.

ACM-CHI 91 Association for Computing Machinery, Inc. Proceeding of CHI, 1991.
Addison-Wesley, Reading, MA, 1991. ISBN: 0-201-51278-5.

Andleigh+G 92 Prabhat Andleigh and Michael Gretzinger. Distributed Object-Oriented Data-
Systems Design. Prentice Hall, Englewood Cliffs, NJ, 1992.

Apple 92 Apple Computer, Inc. Macintosh Human Interface Guidelines. Addison-
Wesley, Reading, MA, 1992. ISBN: 0-201-62216-5.

Baecker+B 87 Ronald M. Baecker and William A.S. Buxton. Readings in Human-Computer
Interaction: A Multidisciplinary Approach. Morgan Kauffman, Los
Altos, California, 1987.

Baecker+GBG 95 Ronald M. Baecker, Jonathan Grudin, William A.S. Buxton, Saul Greenberg.
Reading in Human-Computer Interaction: Toward the Year 2000.
Morgan Kauffman, Los Altos, California, 1995.

Bain+G 96 Steve Bain with Daniel Gray. Looking Good Online. Ventana, Research
Triangle Park, NC, 1996. ISBN: 1-56604-469-3.

Beck 96 Kent Beck. Smalltalk Best Practice Patterns, Volume 1: Coding. (also see
writings at http://c2.com/ppr/titles.html)

Bellin+S 97 David Bellin and Susan Suchman Simone. The CRC Card Book. Addison-
Wesley, Reading, MA, 1997.

Ben-Natan 95 Ron Ben-Natan. CORBA: A Guide to the Common Object Request Broker
Architecture. McGraw-Hill, New York, NY, 1995.

Bergin+G 96 Thomas J. Bergin, Jr. and Richard G. Gibson, Jr., editors. History of
Programming Languages – II. Addison-Wesley, Reading, MA, 1996.

Berson 92 Alex Berson. Client/Server Architecture. McGraw Hill, New York, NY, 1992.

 Booch 94 Grady Booch. Object-Oriented Analysis and Design with Applications.
Benjamin/Cummings, Redwood City, CA, 1994.

Booch 96 Grady Booch. Object Solutions: Managing the Object-Oriented Project.
Addison-Wesley, Menlo Park, CA, 1996.

Brooks 75 Fred Brooks. The Mythical Man-Month. Addison-Wesley, Reading MA, 1975.

Brown+W Kyle Brown and Bruce G. Whitenack. “Crossing Chasms: A Pattern Language
for Object-RDBMS Integration”.
http://www.ksccary.com/ORDBJrnl.htm

Burbeck Steve Burbeck, Ph.D. “Applications Programming in Smalltalk-80(TM): How
to use Model-View-Controller (MVC)”. http://st-
www.cs.uiuc.edu/users/smarch/st-docs/mvc.html

Buschmann+MRSS 96 Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. A System of Patterns: Pattern-Oriented Software
Architecture. Wiley, Chichester, England, 1996

Castano+FMS 95 Silvana Castano, Mariagrazia Fugini, Giancarlo Martella, and Pierangela
Samarati. Database Security. Addison-Wesley, Wokingham, England,
1995.

46 ChiMu Guidelines and Resources Chapter 5
Reading and References

v1.8

Cattell 96 R.G.G. Cattell, Editor. The Object Database Standard: ODMG-93, Release
1.2. Morgan Kaufmann, San Francisco, 1996.

Cattell+B 97 R.G.G. Cattell and Douglas K. Barry, Editors. The Object Database Standard:
ODMG 2.0. Morgan Kaufmann, San Francisco, CA 1997.

Cheswick+B 94 William Cheswick and Steven Bellovin. Firewalls and Internet Security.
Addison-Wesley, Reading, MA, 1994.

ChiMu 97a ChiMu Corporation. Learning FORM.

ChiMu 97e ChiMu Corporation. ChiMu OO/Java Development: Guidelines and
Resources.

Coad+M 96 Peter Coad and Mark Mayfield. Java Design: Building Better Apps & Applets.
Yourdon Press, Upper Saddle River, NJ, 1996.

Codd 90 E.F. Codd. The Relational Model for Database Management, Version 2.
Addison-Wesley, Reading, MA, 1990

Constantine 95 Larry Constantine. Constantine on Peopleware. Prentice Hall, Englewood
Cliffs, NJ, 1995.

Cook 92 William R. Cook. “Interfaces and Specifications for the Smalltalk-80 Collection
Classes” OOPSLA 92 Proceedings Association for Computer
Machinery, New York, NY, 1992

Cook+D 94 Steve Cook and John Daniels. Designing Object Systems: Object-Oriented
Modeling with Syntropy. Prentice Hall, New York, NY, 1994.

Coplien 92 James O. Coplien. Advanced C++ Programming Styles and Idioms. Addison-
Wesley, Reading, MA, 1992.

Coplien+S 95 James Coplien and Douglas Schmidt, Editors. Pattern Languages of Program
Design. Addison-Wesley, Reading, MA, 1995.

Cotter+P 95 Sean Cotter with Mike Potel. Inside Taligent Technology. Addison-Wesley,
Reading, MA, 1995. ISBN: 0-201-40970-4.

Coulouris+DK 94 George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems:
Concepts and Design. Addison-Wesley, Reading, MA, 1994.

Cox+W 93 Kevin Cox and David Walker. User Interface Design. Prentice Hall, New
York, NY, 1993. ISBN: 0-13-952888-1.

Date 86 C.J. Date. Relational Database: Selected Writing. Addison-Wesley, Reading,
MA, 1986.

Date 90 C.J. Date. Relational Database Writings, 1985-1989. Addison-Wesley,
Reading, MA, 1990.

Date 92 C.J. Date. Relational Database Writings, 1989-1991. Addison-Wesley,
Reading, MA, 1992.

Date 95 C.J. Date. An Introduction to Database Systems. Addison-Wesley, Reading,
MA, 1995.

Date 95b C.J. Date. Relational Database Writings 1991- 1994. Addison-Wesley,
Reading, MA, 1995.

Date+D 97 C.J. Date with Hugh Darwin. A Guide to the SQL Standard – Fourth Edition.
Addison-Wesley, Reading, MA, 1997.

Davis 95 Alan Davis. 201 Principles of Software Development. McGraw Hill, New
York, NY, 1995.

47

v1.8

DeMarco 82 Tom DeMarco. Controlling Software Projects. Prentice Hall, Englewood
Cliffs, NJ, 1982.

DeMarco 95 Tom DeMarco. Why Does Software Cost So Much? Dorset House, New York,
NY, 1995.

DeMarco+L 87 Tom DeMarco and Tim Lister. Peopleware: Productive Projects and Teams.
Dorset House, New York, NY, 1987.

DeRose+D 94 Steven J. Derose and David G. Durand. Making Hypermedia Work: A User’s
Guide to HyTime. Kluwer, Boston, MA, 1994.

Firesmith+E 95 Donald Firesmith, Edward Eykholt. Dictionary of Object Technology: The
Definitive Desk Reference. SIGS Books, Inc., New York, NY, 1995.

Fowler 97 Martin Fowler. Analysis Patterns: Reusable Object Models. Addison-Wesley,
Menlo Park, CA, 1997.

Fowler 97 Martin Fowler. UML Distilled: Applying the Standard Object Modeling
Language. Addison-Wesley, Reading, MA, 1997.

Fussell 96 Mark L. Fussell. “A Good Architecture for Object-Oriented Information
Systems”. http://www.chimu.com/publications/oopsla96tutorial23/

Fussell 97a Mark L. Fussell. SmallJava: Using Language Transformation to Show
Language Differences. http://www.chimu.com/publications/smallJava/

Fussell 97b Mark L. Fussell. Java Development Standards.
http://www.chimu.com/publications/javaStandards/

Galitz 93 Wilber O. Galitz. User-Interface Screen Design. QED, Wellesley, MA, 1993.
ISBN: 0-89435-406-X.

Gamma+HJV 95 Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Object-Oriented Architecture. Addison-Wesley,
Reading, MA, 1995.

GemStone 95 GemStone Systems, Incorporated. GemStone Programmers Guide. GemStone,
1995.

GO 91 GO Corporation. PenPoint User Interface Design Reference. Addison-
Wesley, Reading, MA, 1991. ISBN: 0-201-60858-8.

Goldberg+R 83 Adele Goldberg and David Robson. Smalltalk-80: The Language and its
Implementation. Addison-Wesley, Reading, MA, 1983.

Goldfarb 90 Charles F. Goldfarb. The SGML Handbook. Oxford University Press, New
York, NY, 1990.

Gosling+JS 96 James Gosling, Bill Joy, Guy Steele. The JavaTM Language Specification.
Addison-Wesley, Reading, MA, 1996.

Harmon+W 98 Paul Harmon and Mark Watson. Understanding UML: The Developer’s Guide.
Morgan Kaufmann, San Francisco, CA, 1998.

Howard 95 Tim Howard. The Smalltalk Developer’s Guide to VisualWorks. SIGS Books,
New York, NY, 1995.

Humphrey 89 Watts Humphrey. Managing the Software Process. Addison-Wesley, Reading,
MA, 1989.

Humphrey 97 Watts Humphrey. Managing Technical People. Addison-Wesley, Reading,
MA, 1997.

IBM 89 IBM Corporation. Object-Oriented Interface Design: IBM Common User

48 ChiMu Guidelines and Resources Chapter 5
Reading and References

v1.8

Access Guidelines. Que, Carmel, IN, 1989. ISBN: 1-56529-170-0.

Jacobson+CJO 92 Ivar Jacobson with Magnus Christerson, Patrick Johnsson, and Gunnar
Övergaard. Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison-Wesley, Wokingham, England, 1992.

Jacobson+EJ 95 Ivar Jacobson, Maria Ericsson, and Agneta Jacobson. The Object Advantage:
Business Process Reengineering with Object Technology. Addison-
Wesley, Wokingham, England, 1995.

Jacobson+GJ 97 Ivar Jacobson, Martin Gris, and Patrik Jonsson. Software Reuse: Architecture,
Process and Organization for Business Success. Addison-Wesley,
Harlow, England, 1997.

Kay 96 Alan Kay. “The Early History of Smalltalk” in [Bergin+G 96].

Kiczales+RB 91 Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow. The Art of the
Metaobject Protocol. MIT Press, Cambridge, MA, 1991.

Kilov+R 94 Haim Kilov and James Ross. Information Modeling: An Object-Oriented
Approach. Prentice-Hall, Englewood Cliffs, NJ, 1994.

Kim 95 Won Kim, editor. Modern Database Systems: The Object Model,
Interoperability, and Beyond. Addison-Wesley, Reading, MA, 1995.

Knuth 84 Donald E. Knuth. The TeXbook. Addison-Wesley, Reading, MA, 1984.

Lamport 86 Leslie Lamport. LaTeX: A Document Preparation System. Addison-Wesley,
Reading, MA, 1986.

Larman 97 Craig Larman. Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design. Prentice Hall, Englewood Cliffs, NJ,
1997.

Larman 98 Craig Larman. Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design. Prentice Hall, Upper Saddle River, NJ,
1998.

Laurel 91 Brenda Laurel. Computers as Theatre. Addison-Wesley, Reading, MA, 1991.
ISBN: 0-201-51048-0.

Lea-1 Doug Lea. “Java Coding standards”.
http://gee.cs.oswego.edu/dl/html/javaCodingStd.html

Lewis 96 Ted Lewis and Glenn Andert, Paul Calder, Erich Gamma, Wolgang Pree, Larry
Rosentstein, Kurt Schmucker, André Weinang, and John Vlissides.
Object Oriented Application Frameworks. Manning, Greenwich,
England, 1996.

Maguire 94 Steve Maguire. Debugging the Development Process. Microsoft Press,
Redmond, WA, 1994.

Maler+A 96 Eve Maler and Jeanne El Andaloussi. Developing SGML DTDs: From Text to
Model to Markup. Prentice Hall, Upper Saddle River, NJ, 1996.

Mandel 97 Theo Mandel. The Elements of User Interface Design. Wiley, New York, NY,
1997. ISBN: 0-471-16267-1.

Martin+RB 98 Robert Martin, Dirk Riehle, and Frank Buschmann eds. Pattern Languages of
Program Design 3. Addison-Wesley, Reading, MA, 1998.

McCarthy 95 Jim McCarthy. Dynamics of Software Development. Microsoft Press,
Redmond, WA, 1995.

McConnell 93 Scott McConnell. Code Complete: A Practical Handbook of Software

49

v1.8

Construction. Microsoft Press, Redmond, WA, 1993.

McConnell 96 Scott McConnell. Rapid Development. Microsoft Press, Redmond, WA, 1996.

McConnell 98 Steve McConnell. Software Project Survival Guide. Microsoft Press,
Redmond, WA, 1998.

Meyer 92 Bertrand Meyer. Eiffel, The Language. Prentice-Hall, Englewood Cliffs, NJ,
1992.

Meyer 97 Bertrand Meyer. Object Oriented Software Construction, 2nd Edition. Prentice-
Hall, Englewood Cliffs, NJ, 1997.

Mowbray+M 97 Thomas J. Mowbray and Raphael C. Malveau. CORBA Design Patterns.
Wiley, New York, NY, 1997.

Mowbray+R 97 Thomas J. Mowbray and William A. Ruh. Inside CORBA: Distributed Object
Standards and Applications. Addison-Wesley, Reading, MA, 1997.

Mullender 93 Sape Mullender, ed. Distributed Systems. Addison-Wesley, Reading, MA,
1993.

Mullet+S 95 Kevin Mullet and Darrell Sano. Designing Visual Interfaces: Communication
Oriented Techniques. Prentice Hall, Englewood Cliffs, NJ, 1995.
ISBN: 0-13-303389-9.

Nelson 81 Theodor H. Nelson. Literary Machines. (Self published: ISBN 0-89347-055-
04)

NeXT 90 NeXT Computer, Inc. NeXTSTEP User Interface Guidelines. Addison-
Wesley, Reading, MA, 1990.

Nielsen 90 Jakob Nielsen. Multimedia and Hypermedia. Academic Press, Boston, MA,
1990. ISBN: 0-12-518410-7.

Nielsen 93 Jakob Nielsen. Usability Engineering. Academic Press, San Diego, CA, 1993.
ISBN: 0-12-518405-0.

Nielsen 95 Jakob Nielsen. Multimedia and Hypertext: The Internet and Beyond. AP
Professional, Boston, MA, 1995. ISBN: 0-12-518408-5.

Norman 88 Donald A. Norman. The Design of Everyday Things. Doubleday, New York,
NY, 1988. ISBN: 0-385-26774-6.

Norman 92 Donald A. Norman. Turn Signals Are the Facial Expressions of Automobiles.
Addison-Wesley, Reading, MA, 1992. ISBN: 0-201-58124-8.

Norman+D 86 Donald A. Norman and Stephen W. Draper. User Centered System Design.
Lawrence Erlbaum Associates, Hillsdale, NJ, 1986. ISBN: 0-89859-
872-9.

O’Connell 94 Fergus O’Connell. How to Run Successful Projects. Prentice Hall, New York,
NY, 1994.

Orfali+HE 94 Robert Orfali, Dan Harkey, and Jeri Edwards. Essential Client/Server Survival
Guide. Van Nostrand Reinhold, New York, NY, 1994.

Paepcke 93 Andreas Paepcke, Editor. Object-Oriented Programming: The CLOS
Perspective. MIT Press, Cambridge, MA, 1993.

Rational 98 Rational Corporation. “UML: Unified Modeling Language, Version 1.1”.
http://www.rational.com/uml/

Rechtin 91 Eberhardt Rechtin. System Architecting: Creating and Building Complex
Systems. Prentice Hall, Englewood Cliffs, NJ, 1991

50 ChiMu Guidelines and Resources Chapter 5
Reading and References

v1.8

Renaud 93 Paul Renaud. Introduction to Client/Server Systems: A Practical Guide for
Systems Professionals. Wiley, New York, NY, 1993.

Rumbaugh+BPEL 91 James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and
William Lorenson. Object-Oriented Modeling and Design. Prentice-
Hall, Englewood Cliffs, NJ, 1991.

SEI Software Engineering Institute. “Software Architecture Bibliography”.
http://www.sei.cmu.edu/technology/architecture/bibliography.html

Shan+E 98 Yen-Ping Shan and Ralph H. Earle. Enterprise Computing with Objects: From
Client/Server Environments to the Internet. Addison-Wesley, Reading,
MA, 1998.

Shaw+G 96 Mary Shaw and David Garlan. Software Architecture. Prentice-Hall,
Englewood Cliffs, NJ, 1996.

Shneiderman 98 Ben Shneiderman. Designing the User Interface: Strategies for Effective
Human-Computer Interaction. Addison-Wesley, Reading, MA, 1998.
ISBN: 0-201-69497-2.

Skublics+KT 96 Suzanne Skublics, Edward J. Klimas, David A. Thomas. Smalltalk with Style.
Prentice Hall, Upper Saddle River, NJ, 1996

Squeak “Squeak: An open, Highly-portable Smalltalk-80 Implementation”
http://squeak.cs.uiuc.edu/

Stonebraker+M 96 Michael Stonebraker with Dorothy Moore. Object-Relational DBMSs, The
Next Great Wave. Morgan Kauffman, San Francisco, CA, 1996.

Tognazzini 92 Bruce Tognazzini. TOG on Interface. Addison-Wesley, Reading, MA, 1992.
ISBN: 0-201-60842-1

UIUC UIUC Smalltalk/Patterns Group. “Patterns Papers and Bibliography”. http://st-
www.cs.uiuc.edu/users/patterns/patterns.html

Vlissides+CK 96 John Vlissides, James Coplien, and Norman Kerth, Editors. Pattern Languages
of Program Design 2. Addison-Wesley, Reading, MA, 1996.

Webster 95 Bruce Webster. Pitfalls of Object-Oriented Development. M&T Books, New
York, NY, 1995

Weinman 96 Lynda Wienman. Deconstructing Web Graphics. New Riders, Indianapolis,
IN, 1996. ISBN: 1-56205-641-7.

Wilkinson 95 Nancy Wilkinson. Using CRC Cards: An Informal Approach to Object-
Oriented Development. SIGS, New York, NY, 1995.

Winston+H 81 Patrick Henry Winston and Berthold Klaus Paul Horn. LISP. Addison-Wesley,
Reading, MA, 1981.

Wirfs-Brock+WW 90 Rebecca Wirfs-Brock, Brian Wilkerson, and Laura Wiener. Designing Object-
Oriented Software. Prentice Hall, Englewood Cliffs, NJ, 1990.

Witt+BM 94 Bernard Witt, Terry Baker, and Everett Merrit. Software Architecture and
Design: Principles, Models, and Methods. Van Nostrand Reinhold,
New York, NY, 1994.

Woolf Bobby Woolf. “Partitioning Smalltalk Code into ENVY/Developer
Components”. http://c2.com/ppr/envy/. 1995.

51

v1.8

6 Notation
Within this document and other ChiMu documents, some additions and modifications to UML notation are
used. This chapter describes those modifications.

Design notation enhances communication among people. It is an important tool for both the design process
itself and for communicating the finished design to clients and maintainers. Design notation needs to be
standardized because it is shared among many people who must all interpret it consistently. On the other
hand, the notation needs flexibility to grow and support the expression of newer ideas.

ChiMu uses a design notation based on UML (see [Rational-1 http://www.rational.com/uml/]), but it has
some variations that are improvements, additions, or legacies from other notations. For example, we
consider the work by Kilov and Ross on information modeling [Kilov+R 94] to be very useful and
important. Although [Kilov+R 94] does not require a specific visual notation, they do suggest one, which
we merged into our common notation.

The following describes our notation’s differences from UML. If something is not mentioned it should be
assumed that the UML notation is the correct notation. Also, at no point is UML notation interpreted
differently: UML notation is interpreted just as in UML. The notation below augments and can override
UML but does not conflict with it. All of the items below could be described as stereotypes within UML.

6.1 Objects and Classes
The most obvious difference between UML and our notation is that we normally
use hexagons instead of rectangles to identify objects and classes. This is to
maintain the property from Booch notation of objects being distinctly recognizable
and visible in diagrams. UML/OMT rectangles are neither distinct (other notations
use rectangles to indicate tables, rows, layers, etc.) nor particularly visible in
complex diagrams. These properties are very important for us.

Class

Rumbaugh did have a legitimate argument that Booch clouds were difficult to draw and even to
electronically use (because they are hard to connect to). Booch and Rumbaugh came up with a very good
(synergistic) solution of using hexagons in early versions of the UML, but later versions of the UML
abandoned them. This was unfortunate and we decided to reverse that mistake.

Methods
The “compartment” for methods extends beyond the edge of the hexagon
because methods are potentially publicly visible. Methods can either all be in
one compartment, or separated into different compartments for the different
interfaces to the class.

If placed within one compartment, different protocols (groups of methods) are
organized like lists are in UML.

We use standard UML method annotations.

Polygon
display (on: Surface)
rotate (angle: Integer)
erase()
destroy()
select (p: Point) : Boolean

52 ChiMu Guidelines and Resources Chapter 6
Notation

v1.8

Attributes
An attribute is a public property of an object that
shows the state of the object. We do not make
any distinction between attributes and other
methods other than possibly showing them as a
separate protocol from other methods. If
attributes are independently changable, they will
have a corresponding ‘set’ method.

Rectangle
p1()
p2()

area()
perimiter()

Rectangle
p1(), setP1()
p2(), setP2()

area()
perimiter()

Frequently there is a minimal collection of attributes that uniquely determine the state of the object, but this
should not be confused with the instance variables which may be used to store that state.

Instance Variables
Instance variables are private to a class and a shown in a compartment
completely within the hexagon and (usually) below the methods. This is
inverted from UML where frequently instance variables are considered attributes
and are shown before the methods. Stylistically they are centered and italicized.

Polygon

center: Point
vertices: List of Point
borderColor: Color

fillColor: Color

display (on: Surface)
rotate (angle: Integer)

Message Sends
Inter-class interfaces and message sends can be
shown by connecting arrows to the appropriate
method of a class. Class

Rectangle
p1()
setP1()

area()
perimiter()

Class

Shorthand for hand drawings
It is acceptable to fall back on just using a rectangle with three compartments (but having instance variables
at the bottom) when drawing classes by hand.

6.2 Types
We use a separate notation for Types than for classes. Types are shown
with a “Set-like” notation of a curly edged box. This distinguishes them
from classes and makes them more distinct then just a rectangle again.
Otherwise they have the same meaning as the rectangles in [Kilov+R 94].

Type

Method (and Attribute) compartments can be specified for a Type, but
instance variables can not be. Pointx()

y()

53

v1.8

A Class (or Object) can be shown to
implement a Type by an arrow pointing
from the Class to the Type.

Class

Type

When the class is not important enough
to be very large, its symbol can be
shrunk and the name placed outside.
This is frequently useful for giving
example implementations of a Type in a
complicated diagram.

Type

ImplementingClassName

Shorthand for hand drawings
It is acceptable to draw types as straight rectangles instead of the curly rectangles. It is also acceptable to
use a Class notation to indicate a Type when doing Conceptual or Design model diagrams. This is the result
of an inherent property of UML that during Conceptual and Design phases all models are external
specification models.

6.3 Relationships
Generally we use UML notation when possible. Information Modeling [Kilov+R 94] has a richer set of
relationships than UML and a cleaner decomposition of them, so in certain diagrams we will use them
instead of the less precise UML notations.

Kilov and Ross relationship types

S SE S+

D

R

C

Subtypes/Subsets

Dependent Object

Composition CC

Symmetric

6.4 Code Blocks
We use the same dog-eared notation as Design Patterns [Gamma+HJV 95] for
methods and other code annotations

r
^(self myX squared +

self myY squared) sqrt

54 ChiMu Guidelines and Resources Chapter 6
Notation

v1.8

6.5 Other Notations
This section shows some other more unusual notations that are also interesting.

Functor
Functors are objects that model operations that can be performed. Their
notation is interesting because of its distinctive combination of other
notations already existing: hexagons for classes and dog-eared notes for
Code blocks.

initializeFromMapper
(Procedure2Arg)

Enhancement
An enhancement to a class is an added piece of functionality beyond the core
class functionality. Enhancements allow you to manage portions of functionality
of a cClass individually while still having all that functionality directly available
on instance of the class. For example, you might want your presentation logic to
be separate from your true (presentation independent) business domain logic.
You could make the ability to create user-readable information an enhancement
of your domain class. Since Java doesn’t support enhancements this notation is
only useful for conceptual modeling. Class

Enhancement

method

Private Functionality
A class can be considered to have a public interface that talks to an
inner class that manages the state of the object. This means all
communication from the public interface will go through private
methods to access state information, which allows the object to
change its state representation (e.g. delegating to another object)
without impacting the public methods.

x
y

myX

x

r

myY

ChiMu Corporation
1220 N. Fair Oaks Ave, #1314

Sunnyvale, CA 94089

Phone: 408 734-9068
Email: info@chimu.com

www.chimu.com

