
Apple JavaScript Coding Guidelines
Scripting & Automation > JavaScript

2008-10-15

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, Mac OS, Quartz,
Safari, and Tiger are trademarks of Apple Inc.,
registered in the United States and other
countries.

Numbers is a trademark of Apple Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLEMAKESNOWARRANTYORREPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,

MERCHANTABILITY,OR FITNESS FORAPARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIALDAMAGESRESULTINGFROMANY
DEFECTOR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THEWARRANTYANDREMEDIES SET FORTHABOVE
ARE EXCLUSIVE AND IN LIEUOF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusionmay not apply to you. Thiswarranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Apple JavaScript Coding Guidelines 7

Who Should Read This Document? 7
Organization of This Document 7
Getting WebKit Builds 7
See Also 7

JavaScript Basics 9

Variables and Assignments 9
Data Types 10
Conditional Statements 10
Iteration Using Loops 12
Functions 12
Other Special Characters 13

The Question Mark and Colon Connectors 13
The Comma Separator 13

Object-Oriented JavaScript 15

Declaring an Object 15
Freeing Objects 16
Arrays and Objects 16
Getters and Setters 17
Inheritance 17
Copying an Object 18

JavaScript Best Practices 21

Memory and Performance Considerations 21
Testing Your Code 21
Global Scope Considerations 22
JavaScript Toolkits 24

Document Revision History 25

3
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

4
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Tables

JavaScript Basics 9

Table 1 Primitive types in JavaScript 10
Table 2 Conditional Operators 11

5
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

6
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

This document provides an overview of the JavaScript language as provided by Apple in the WebKit and
JavaScript Core frameworks. It looks at JavaScript language basics, object-oriented programming using
JavaScript, and best practices to follow when writing JavaScript code.

Who Should Read This Document?

You should read this document if you are a webpage or Dashboard widget developer who wants to learn
JavaScript and best practices for Apple’s JavaScript runtime. Also, this document is useful if you’re using an
application that offers a scripting environment that uses Apple’s JavaScript Core framework, like Installer or
Quartz Composer.

Organization of This Document

This document contains the following chapters:

 ■ “JavaScript Basics” (page 9) introduces you to the JavaScript language and its basic structures.

 ■ “Object-Oriented JavaScript” (page 15) discusses implementing an object in JavaScript.

 ■ “JavaScript Best Practices” (page 21) shows you best practices to consider when coding in JavaScript.

Getting WebKit Builds

Safari is powered by the WebKit framework, an open source project found at WebKit.org. To try your web-based
JavaScript code with the latest JavaScript language features, download a nightly build from http://nightly.we-
bkit.org/.

See Also

The Reference Library > Apple Applications > Safari provides useful information on WebKit, the technology
that provides Apple’s JavaScript runtime. Read WebKit DOM Programming Topics to learn more about the
WebKit DOM interfaces, useful when coding a webpage or Dashboard widget.

Read Dashboard Programming Topics for information on the technologies available to you when creating a
Dashboard widget. Additional Dashboard documents and sample code can be found in the Reference Library
> Apple Applications > Dashboard.

Who Should Read This Document? 7
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Introduction to Apple JavaScript Coding
Guidelines

http://www.webkit.org/
http://nightly.webkit.org/
http://nightly.webkit.org/

Installer Tiger Examples includes information on using the JavaScript runtime included with Apple’s Installer
application.

8 See Also
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Introduction to Apple JavaScript Coding Guidelines

JavaScript is a programming language used by web browsers to provide scripting access to webpages. It’s
also being used more and more by desktop applications to provide an embedded scripting environment. If
you’re already familiar with programming, JavaScript is easy to learn and provides many of the conventions
you’re already used to.

This chapter introduces JavaScript language basics, including variables, iteration, and functions. Read it if
you’re familiar with programming principles and want to learn specifics about the JavaScript language.

Variables and Assignments

The basic building block in JavaScript is the variable. You declare variables using the var keyword, like this:

var foo;

Important: Although you can use variables without declaring them explicitly, this is strongly discouraged.
If you assign a value to an undeclared variable within a function, you are effectively creating and using a
global variable instead of a variable local to that function. If the function ever gets called recursively, or if it
is simultaneously called by two different user actions, the two executing instances of the function will clobber
each other’s storage, resulting in very hard-to-find bugs.

You should get in the habit of always declaring variables with the var keyword prior to use unless you are
intentionally storing data globally.

JavaScript variables are type agnostic—they can hold data of any type, like a number or an object. Once you
declare a variable, you assign it a value like this:

foo = 5;

The assignment operator, =, gives the variable to its left the value of the expression to its right. As shown, a
variable can be given a literal value like a number. It can also be given the value of another variable, like this:

var foo, bar;
foo = 5;
bar = foo;

Notice that foo and bar are declared in the same statement. This is a convenience used to declare many
variables at once. Also note that each statement ends with a semicolon; JavaScript doesn’t require this
behavior but it’s a helpful convention that prevents ambiguity since it clearly marks the end of a statement.
As statements get more complex, leaving out a semicolon may cause unintended consequences, so it’s best
to include one at the end of each statement.

Variables and Assignments 9
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

JavaScript Basics

Data Types

There are five primitive types in JavaScript, as shown in Table 1.

Table 1 Primitive types in JavaScript

DescriptionType

A numerical value, capable of handling integer and floating-point valuesnumber

A logical value, either true or falseboolean

A sequence of charactersstring

No valuenull

An unknown valueundefined

JavaScript freely converts between data types as needed. Consider this statement:

var x = 1 + "2";

JavaScript first promotes the number 1 to the string "1" and then assigns the newly concatenated string
"12" to x.

If you want to do a numeric addition, you must use the parseInt function. For example:

var x = 1 + parseInt("2", 10);

The second parameter is a radix value, and is guessed based on the number if omitted following the same
rules as a number in C. (Numbers starting with 0x are hex, other numbers starting with 0 are octal, and all
other numbers are base 10.)

Anything that is not a primitive type is an object. Primitive types are promoted to objects as needed, like
this:

var message = "Hello World";
var firstCharacter = message.charAt(0);

JavaScript promotes the string "Hello World" to an object in order to call the charAt member function.

Conditional Statements

JavaScript includes conditional statements where enclosed code runs only if its preceding statement evaluates
to a Boolean true value. A typical conditional statement starts with the if keyword and is followed by a
statement to test, like this:

if (variable == true)
{

// code to execute when this statement is true
}

10 Data Types
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

JavaScript Basics

As in most C-like languages, true is equivalent to the number one (1) and false is equivalent to the number
zero (0).

Within the brackets { ... }, you place the code to execute if the preceding statement is true. The statement
itself needs to evaluate to a Boolean value, either true or false. Various operators are used to assemble
conditional statements, as shown in Table 2.

Table 2 Conditional Operators

DescriptionConditional
Operator

Returns true if both values are equal. Coerces values of different types before
evaluating.

==

Returns true if both values are equal and of the same type. Returns false otherwise.===

Returns true if values are not equal. Coerces values of different types before evaluating!=

Returns true if both values are not equal or not of the same type. Returns false
otherwise.

!==

Returns true if the left value is less than the right value. Returns false otherwise.<

Returns true if the left value is less than or equal to the right value. Returns false
otherwise.

<=

Returns true if the left value is greater than the right value. Returns false otherwise.>

Returns true if the left value is greater than or equal to the right value. Returns false
otherwise.

>=

Each if statement can also have a corresponding else statement, where the enclosed code is executed when
the if statement evaluates to false, like this:

if (variable == true)
{

// code to execute when this statement is true
}
else {

// code to execute when this statement is false
}

When you want to check a value versus a number of values, a switch statement is useful. In a switch
statement, you provide a conditional statement or variable and cases to match the statement’s outcome or
variable’s value, like this:

switch (variable){
case 1: // code to execute when variable equals 1

break;
case 2: // code to execute when variable equals 2

break;
default: // code to execute when variable equals something other than the

cases
break;

}

Conditional Statements 11
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

JavaScript Basics

Note that each case ends with a break statement and that the default case, if provided, is called if none of
the cases are matched.

Iteration Using Loops

JavaScript provides structures for looping code while a condition is true. The most basic looping structure is
the while loop, which executes code while a conditional statement equals true:

while (variable == true)
{

// code to execute while variable is true
}

A variation on the while loop is the do-while loop, which executes its code at least once before checking
its conditional statement, like this:

do
{

// code to execute while variable is true
}
while (variable == true);

The final loop type is the for loop. It uses three statements: an initialization statement, a conditional statement,
and a iterative statement, called every time the loop completes. The most common pattern of use calls for
the first statement to initialize a counter variable, the second to check the counter’s values, and the third to
increment it, like this:

for (var i = 0; i < variable; ++i)
{

// code to execute within this loop
}

Functions

JavaScript allows you to wrap code into a function that you can reuse anywhere. To create a function, use
the function keyword, provide a name, and include a list of any variables you want to pass in:

function myFunction (variableOne, variableTwo)
{

// code to execute within this function
}

Functions can be declared and used anywhere within a block of JavaScript code. Variables that contain
primitive values are passed into a function by value, whereas objects are passed in by reference. Functions
can optionally return a value using the return keyword:

function myFunction (variableOne)
{

// code to execute within this function
return variableOne;

}

12 Iteration Using Loops
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

JavaScript Basics

Functions implicitly return undefined if you don’t supply a return value.

Functions can also be assigned to a variable, like this:

var myFunctionVariable = function (variable)
{

// code to execute within this function
}

Once a function is defined within a variable, it can be passed as an argument into any other function. Within
the receiving function, you can call that function by placing parentheses after the variable’s name and
optionally including arguments, like this:

function myFunction (myFunctionVariable)
{

myFunctionVariable("aString");
}

Other Special Characters

As in most C-like languages, JavaScript has various characters that allow you to connect multiple statements
in useful ways. This section describes a few of them.

The Question Mark and Colon Connectors

The question mark and colon can be used in a comparison or calculation in the same way you would use an
if-then-else statement in code. For example, suppose you want to increment or decrement the value of
variable Q, depending on whether the value of the variable increment is true or false. You could write that
code in either of two ways:

if (increment) { Q++; } else { Q--; }
// or
Q=increment ? Q+1 : Q-1;

These two statements are equivalent in every way. Overuse of this syntax can make code less readable, but
moderate use can sometimes significantly clean up what would otherwise be deeply nested control statements
or unnecessary duplication of large amounts of code.

For example, this syntax is often used for very simple conversion of numerical values to strings for output.
The snippet below prints “yes” or “no” depending on whether the increment variable is set or not:

alert('Increment: '+(increment ? "yes" : "no"));

The Comma Separator

The comma separator is used to separate items in lists, such as function parameters, items in an array, and
so on, and under some circumstances, can also be used to separate expressions.

Other Special Characters 13
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

JavaScript Basics

When used to separate expressions, the comma separator instructs the interpreter to execute them in
sequence. The result of the expression is the rightmost expression. This use of the comma is generally reserved
for locations in your code where a semicolon has special meaning beyond separating statements.

For example, you use a semicolon to separate the parts of a C-style for loop as shown in this snippet:

for (var i = 0; i < variable; ++i)
{

// code to execute within this loop
}

If you need to increment multiple values at each stage of the loop, you could make your code harder to read
by indexing one value off of the other (maybe) or by placing additional assignment statements prior to the
start of the loop and as the last statement in the loop. However, this practice tends to make it harder to spot
the loop iterator variables and thus makes the code harder to follow.

Instead, you should write the for loop as shown in this snippet, which displays an alert with five characters
each, taken from different places in two strings:

var string = "The quick brown fox jumped over the lazy dog.";
var stringb = "This is a test. This is only a test.";

for (var i=0, j=4; i<5; i++, j++) {
alert('string['+i+'] = '+string[i]);
alert('stringb['+j+'] = '+stringb[j]);

}

Note: The comma separator behaves subtly differently in the first part of a for statement. This code creates
two local variables, i and j. If you must mix local and global variables, you must declare the local variables
outside the loop and omit the var keyword entirely.

Within the middle part of a for loop, the comma separator is nearly useless except for code obfuscation
purposes. The rightmost comparison statement in such a list is used for comparison purposes.

14 Other Special Characters
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

JavaScript Basics

JavaScript code doesn’t necessarily follow object-oriented design patterns. However, the JavaScript language
provides support for common object-oriented conventions, like constructors and inheritance, and benefits
from using these principles by being easier to maintain and reuse.

Read this chapter if you’re already familiar with object-oriented programming and want to see how to create
object-oriented code with JavaScript.

Declaring an Object

JavaScript provides the ability to create objects that contain member variables and functions. To define a
new object, first create a new function with the desired object’s name, like this:

function myObject()
{

// constructor code goes here
}

This function works as the object’s constructor, setting up any variables needed by the object and handling
any initializer values passed in as arguments. Within the constructor or any member function, persistent
instance variables are created by adding them to the this keyword and providing the variable with a value,
like this:

this.myVariable = 5;

To create a new member function, create a new anonymous function and assign it to the prototype property
of the object. For example:

myObject.prototype.memberMethod = function()
{

// code to execute within this method
}

Important:You must do this assignment outside the constructor. Assigning a member function to a prototype
should not be confused with assigning an anonymous function to a member variable of a class, which only
adds the function to a particular instance of the class, and is probably not what you want.

After you have created the constructor for your object, you can create new object instances by using the
new keyword followed by a call to the constructor function. For example:

var myObjectVariable = new myObject();

This particular constructor takes no parameters. However, you can also create more complex constructors
for classes that allow you to specify commonly used or mandatory initial values. For example:

Declaring an Object 15
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Object-Oriented JavaScript

function myObject(bar)
{

this.bar = bar;
}

myobj = new myObject(3);
alert('myobj.bar is '+myobj.bar); // prints 3.

One common use of this technique is to create initializers that duplicate the contents of an existing object.
This is described further in “Copying an Object” (page 18).

Freeing Objects

Just as you used the new operator to create an object, you should delete objects when you are finished with
them, like this:

delete myObjectVariable;

The JavaScript runtime automatically garbage collects objects when their value is set to null. However,
setting an object to null doesn’t remove the variable that references the object from memory. Using delete
ensures that this memory is reclaimed in addition to the memory used by the object itself. (It is also easier
to see places where your allocations and deallocations are unbalanced if you explicitly call delete.)

Arrays and Objects

JavaScript provides arrays for collecting data. Since an array is an object, you need to create a new instance
of an array before using it, like this:

var myArray = new Array();

Alternatively, you can use this simpler syntax:

var myArray = [];

Once you create an array, you reference elements using integer values inside of brackets, like this:

myArray[0] = "first value";
myArray[1] = 5;

The previous example shows that arrays, like variables, can hold data of any type.

Generic objects and arrays can be used with associative properties, where strings replace the index number:

myObject["indexOne"] = "first value";
myObject["indexTwo"] = 5;

When you use a string as an index, you can use a period instead of brackets to access and assign data to that
property:

myObject.name = "Apple Inc.";
myObject.city = "Cupertino";

16 Freeing Objects
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Object-Oriented JavaScript

You can declare an object and its contents inline, as well:

myObject = {
name: "Apple Inc.",
city: "Cupertino"

}

A variation of the for loop is available for iterating within the properties of an array or object. Called a for-in
loop, it looks like this:

for (var index in myArray)
{

// code to execute within this loop
}

Getters and Setters

Recent WebKit builds (available from webkit.org) contain support for getter and setter functions. These
functions behave like a variable but really call a function to change any underlying values that make a property.
Declaring a getter looks like this:

myObject.__defineGetter__("myGetter", function() { return this.myVariable; }
);

It is essential that a getter function return a value because, when used, the returned value is used in an
assignment operation like this:

var someVariable = myObject.myGetter;

Like a getter, a setter is defined on an object and provides a keyword and a function:

myObject.__defineSetter__("mySetter", function(aValue) { this.myVariable =
aValue; });

Note that setter functions need to take an argument that’s used in an assignment statement, like this:

myObject.mySetter = someVariable;

Inheritance

JavaScript allows an object to inherit from other objects via the prototype keyword. To inherit from another
object, set your object’s prototype equal to the prototype of the parent object, like this:

MyChildObject.prototype = MyParentObject.prototype;

Getters and Setters 17
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Object-Oriented JavaScript

Note: Because the prototype keyword is undefined on instances of a class, this action must be performed
on the constructor function names, not on variables containing instances of the class.

This copies all of the parent’s functions and variables to your object. It does not, however, copy the default
values stored in that object. If your purpose is to subclass an object completely, you must also execute code
equivalent to the original constructor or construct an instance of the original type and copy its values as
described in “Copying an Object” (page 18).

Recent WebKit builds also include the ability to extend an existing DOM object via the prototype keyword.
The advantage of this over inheritance is a smaller memory footprint and easier function overloading.

Copying an Object

In object-oriented programming, you often need to make a copy of an object. The most straightforward (but
painful) way to do this is to methodically copy each value by hand. For example:

function myObjectCopy(oldobj)
{

// copy values one at a time
this.bar = oldobj.bar;

}

For very simple objects, explicit copying is fine. However, as objects grow larger, this technique can become
unmanageable, particularly if additional variables are added to an object outside the constructor. Fortunately,
because a JavaScript object is essentially an associative array, you can manipulate it just as you would an
array. For example:

function myObjectCopy(oldobj)
{

// copy values with an iterator
for (myvar in oldobj) {

this[myvar] = oldobj[myvar];
}

}

You should be aware, however, that assigning an object to a variable merely stores a reference to that object,
not a copy of that object, and thus any objects stored within this object will not be copied by the above
code.

If you need to perform a deep copy of a structured tree of data, you should explicitly call a function to copy
the nested objects. The easiest way to do this is to include a clone function in each class, test each variable
to see if it contains an object with a clone function, and call that function if it exists. For example:

// Create an inner object with a variable x whose default
// value is 3.
function innerObj()
{

this.x = 3;
}
innerObj.prototype.clone = function() {

var temp = new innerObj();
for (myvar in this) {

18 Copying an Object
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Object-Oriented JavaScript

// this object does not contain any objects, so
// use the lightweight copy code.
temp[myvar] = this[myvar];

}
return temp;

}

// Create an outer object with a variable y whose default
// value is 77.
function outerObj()
{

// The outer object contains an inner object. Allocate it here.
this.inner = new innerObj();
this.y = 77;

}
outerObj.prototype.clone = function() {

var temp = new outerObj();
for (myvar in this) {

if (this[myvar].clone) {
// This variable contains an object with a
// clone operator. Call it to create a copy.
temp[myvar] = this[myvar].clone();

} else {
// This variable contains a scalar value,
// a string value, or an object with no
// clone function. Assign it directly.
temp[myvar] = this[myvar];

}
}
return temp;

}

// Allocate an outer object and assign non-default values to variables in
// both the outer and inner objects.
outer = new outerObj;
outer.inner.x = 4;
outer.y = 16;

// Clone the outer object (which, in turn, clones the inner object).
newouter = outer.clone();

// Verify that both values were copied.
alert('inner x is '+newouter.inner.x); // prints 4
alert('y is '+newouter.y); // prints 16

Copying an Object 19
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Object-Oriented JavaScript

20 Copying an Object
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Object-Oriented JavaScript

There are a number of considerations that you should take into account when writing JavaScript code.
Whether you’re trying to tune your code for better performance or test it for compatibility, these best practices
can help your code perform better and be more compatible.

If you’re looking for performance and testing tips for JavaScript coding, read this chapter.

Memory and Performance Considerations

This section includes a number of tips for minimizing your JavaScript application’s memory footprint and
helping it perform better.

 ■ Release initialization functions. Code that’s called once and never used again can be deleted after its
execution. For instance, deleting a window’s onload handler function releases any memory associated
with the function, like this:

var foo = function()
{

// code that makes this function work
delete foo;

}
window.addEventListener('load', foo, false);

 ■ Use delete statements. Whenever you create an object using a new statement, pair it with a delete
statement. This ensures that all of the memory associated with the object, including its property name,
is available for garbage collection. The delete statement is discussed more in “Freeing Objects” (page
16).

 ■ Test for an element’s existence. Before using nonstandard elements, check for their existence like this:

if ("innerHTML" in document.getElementById("someDiv"))
{

// code that works with innerHTML
}

 ■ Avoid evaluated statements.Using the eval function disables performance and memory optimizations
in the JavaScript runtime. Consider using function variables, as discussed in “Functions” (page 12), in
cases where you are passing in lines of code to another function, like setTimeout or setInterval.

Testing Your Code

When creating a JavaScript application, consider these tips for testing your code.

Memory and Performance Considerations 21
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

JavaScript Best Practices

 ■ Try multiple browsers. It’s a good practice to try any web-based JavaScript code you write in many
browsers. In addition to the version of Safari included with Mac OS X, consider trying your code on these
browsers:

 ❏ WebKit nightly - http://nightly.webkit.org/

 ❏ Mozilla Firefox - http://www.mozilla.com/firefox/

 ❏ Opera - http://www.opera.com/

 ■ Try other toolkit versions. If you’re using a third-party JavaScript toolkit such as Dojo, MochiKit, or
prototype, try different versions of the library to see if your code uses the library properly.

 ■ Try a verifier. JavaScript verifiers such as JSLint are useful at pinpointing compatibility problems and
cases where the JavaScript code you wrote doesn’t conform to standards.

Global Scope Considerations

When writing JavaScript code, it’s good practice to avoid placing code and variables within the global scope
of the file. Here are some considerations to consider regarding global scope:

 ■ Store data in theDOM tree, in cookies, or in HTML 5 client-side storage objects. The DOM tree, cookies,
and HTML 5 client-side storage are good ways to conceal data to avoid conflicts with pages outside your
domain. For performance reasons, you should generally limit use of these techniques to infrequently-used
data, but any of these three techniques is better than using global variables.

You can store data in the DOM tree like this:

/* Store data in the DOM tree */
var DOMobj = document.getElementById('page_globals');
DOMobj.setAttribute('foo', myIntegerVar);

/* for large text content, consider using this: */
DOMobj.style.display = "none";
DOMobj.innerHTML = myStringVar;

/* or this: */

DOMobj.style.display = "none";
if (typeof(DOMobj.innerText) != 'undefined') {

Internet Explorer workaround
DOMobj.innerText = myStringVar;

} else {
Per the W3C standard
DOMobj.textContent = myStringVar;

}

/* Recall the data later */
var DOMobj = document.getElementById('page_globals');
var myIntegerVar = parseInt(DOMobj.getAttribute('foo'));

/* Recall the large text data with this: */
var myStringVar = DOMobj.innerHTML;

/* or this: */

22 Global Scope Considerations
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

JavaScript Best Practices

http://nightly.webkit.org/
http://www.mozilla.com/firefox/
http://www.opera.com/
http://www.jslint.com/

var myStringVar;
if (typeof(DOMobj.innerText) != 'undefined') {

Internet Explorer workaround
myStringVar = DOMobj.innerText;

} else {
Per the W3C standard
myStringVar = DOMobj.textContent;

}

Cross-Browser Compatibility Note: Internet Explorer does not support the textContent attribute on
elements. For maximum compatibility, as shown in the previous example, you should support not only
the W3C-standard textContent attribute, but also the IE-specific innerText attribute.

You can also store data in cookies using the cookie attribute of the document object. The syntax for
creating and expiring cookies is somewhat complex and easy to get wrong. Thus, this method is
discouraged as a global variable alternative unless you already have code for creating and modifying
cookies. To learn more about cookies in JavaScript, read http://www.quirksmode.org/js/cookies.html.

Finally, you can use HTML 5 client-side storage as described in Safari JavaScript Database Programming
Guide. Safari 3.1 and later provides both SQL database and local key-value storage.

 ■ Use the var keyword. Any variable created without the var keyword is created at the global scope and
is never eligible for garbage collection, presenting the opportunity for a memory leak.

 ■ Use a global array, global object, or namespace prefix. If you need global variables, use a global object
that contains all of the global variables, like this:

var myBulletinBoardAppGlobals = {
foo: "some value",
bar: null

};

Or consider using a namespace prefix:

CPWFoo = "some value";
CPWBar = null;

These practices prevent your global variables from colliding with global DOM objects present in the
runtime.

 ■ Use an initialization function. If you have code that’s run immediately when the JavaScript is loaded,
place it in a function that’s called when the window loads, like this:

globals.foo = function()
{

// code that makes this function work
delete globals.foo;

}
window.addEventListener('load', globals.foo, false);

Global Scope Considerations 23
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

JavaScript Best Practices

http://www.quirksmode.org/js/cookies.html

JavaScript Toolkits

JavaScript toolkits enhance productivity but often carry a significant memory footprint that may slow down
your JavaScript application. When using a toolkit, try to reduce the toolkit’s footprint to just the APIs that
you use in your application.

Also, if you’re developing a Dashboard widget, try to avoid bundling the Apple-provided Apple Classes within
your widget; instead, follow the instructions provided in Introduction to the Apple Classes.

24 JavaScript Toolkits
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

JavaScript Best Practices

This table describes the changes to Apple JavaScript Coding Guidelines.

NotesDate

Added additional content about using the DOM tree as an alternative to global
variables. Made several typographical fixes.

2008-10-15

Changed the title from "JavaScript Coding Guidelines for Mac OS X."2008-01-15

Added some additional tips and techniques.2007-09-11

Fixed typographical errors.2007-07-10

New document that provides an overview of the JavaScript language, its
object-oriented features, and coding best practices.

2007-06-11

25
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Document Revision History

26
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Document Revision History

	Apple JavaScript Coding Guidelines
	Contents
	Tables
	Introduction
	JavaScript Basics
	Variables and Assignments
	Data Types
	Conditional Statements
	Iteration Using Loops
	Functions
	Other Special Characters
	The Question Mark and Colon Connectors
	The Comma Separator

	Object-Oriented JavaScript
	Declaring an Object
	Freeing Objects
	Arrays and Objects
	Getters and Setters
	Inheritance
	Copying an Object

	JavaScript Best Practices
	Memory and Performance Considerations
	Testing Your Code
	Global Scope Considerations
	JavaScript Toolkits

	Revision History

