Visual Basic™ 32-bit Application Development
Standards and Guidelines

Author: Erica Wieland
FemmeTech Inc.
P.O. Box 307
Smithfield, VA 23431-0307
EHWid and@FemmeT ech.com

Revised: 1/4/2002

Copyright © 2000 by FemmeTech Inc. All rights reserved.

Visual Basic 6.0 Development Standards and Guidelines

Portions of these guidelines are provided under IHS Professond Services.
Copyright © 1993-1999 by IHS Professional Services. All rights reserved.

Windows® and Visud Basc® are registered trademarks of Microsoft Corporation.

Programming Standards.doc i January 4, 2002

Visual Basic 6.0 Development Standards and Guidelines

Table of Contents

1. INTRODUGCTION ... cuuttiiieieeeeeieeiutteeeeeeaaeessaasssseeeeeaaassaaasssssaeesaassesaasssseneesaesssaasasssssneseeseesansnssens 1
2. ACKNOWLEDGEMENTS. ... utttteeiitteteeeetteeesesuseeessssseeessssseessassssesesasssessssasssseesasssssesssssnesssnnses 1
3. REFERENCES. ...t ctttiiiee e e e ettt e e e e e e e s et e e e e e e e e e sesaataeeeeeaaeeaasstseeeeeaaeeesaassssaneeeaaessannnnrens 2
4. DOCUMENT STRUCTUREcutteiiitieeeeerireeeeesseeeeesnnnneesanns ERROR! BOOKMARK NOT DEFINED.

41, First Outline Level ... Error! Bookmark not defined.
411, TS0l 0] S e PP Error! Bookmark not defined.
412, Section 4 Error! Bookmark not defined.
413 Section 5 Error! Bookmark not defined.
414, SeCtioNS B throUg 14 ... Error! Bookmark not defined.

4.2, Second OULHNELEVE.......cccuvvieeiciee et Error! Bookmark not defined.
42.1. SECtiONS 5 thrOUGN 14 ... Error! Bookmark not defined.

5. GENERAL CONVENTIONSuttiieiiiieeeeesiieeeessseeeesassseeeesssnsessesssssesesasssssesssssssssssssssesesassssees 2

5.1.
511
51.2.
51.3.

5.2.
5.2.1.
522
523
5.2.4.
5.2.5.

LR T 0o 0 10 01 1] Vo PRSP 5
531 PUIDOSE. ...ttt 5
532 General CommENtiNG GUITEIINES.........ccovreireieerreste et s e st s e snsees 5

6. FORMS, MODULES & CLASSES.....oeiiiiitiieeieiieieeeeiteeeeeetseeeeesaseeeesesssseeesassseesesssseesssanssneesans 7

G20 I =T 1 Vo PP 7

L ©o o |1 oo PSPPSRI 7
6.2.1. LS Yoo 1 o) 1 T o o | RPN 7
6.2.2. Indentationcccccovuveunee
6.2.3. White Space.................

6.2.4. Multiple Statements

6.2.5. Use of the Line Continuation CharaCter (().....ccocverenirereseeesessisssessssssssessssssssssssssssssessssssssssssssssssssssssssssns
6.2.6. USE Of CaSE SLALEMIENEScucveececeeirecesietsi st sse st sessss e s s s st s st ea st et s e s se b s s snsnseasnnnsnsnsnsnnss
6.2.7. Use of “Magic Numbers” or “Magic Literals”

6.2.8. Use of “&” and “+" fOr CONCALENGLION.......c.coueveeurireceeieirisssieesesss sttt sesesssesss st sssssssssssssssssssnssns
6.2.9. Use of AN ObJeCt’ S DEfaUIt PrOPEITYcccvieereeeeirrersts sttt ettt ssssssssssssssssessssssssssssssssssssssssssssssssnssns
6.2.10. Use of GoTo

6.2.11. LU LS Y o) 1 PR
6.212. SINGIEEXIT POIML......cciiiiceeeeesieeete sttt sttt ee st st sn s s e e sn s et s e st s e snsesesnnnnansnsnnnas
6.213. Classlnitiaization....

B.2.14. EITOr HANAIING......cveceeeeiiicieieisesee st sessssssesess e sse st s s s st s e s st sse s sssessesssnsesssesssesessenssnsesnnnnsnsesnnssns

Programming Standards.doc i January 4, 2002

Visual Basic 6.0 Development Standards and Guidelines

LT T ©o a1 ¢ 70 1 o SRS 10
6.3.1. Module, fOrm and ClaSS NBATET'Sceiveceiececeie ettt se et st 10
6.3.2. Code MaiNtENANCE COMMENTS.......ucueeiiieieeesie et e e se st ss st st s et sbs e s sesb e st st sbe s st st ebase st sesbesssssbsbsassesbesssnanas 11

7. PROCEDURES AND FUNGCTIONS eeeeeeeee et e et e e e e eeee e e e e e e e e e e ee e e eee e e e e e eaaeeeeeeaeeeennnaaes 12

7.1 NN = T 011 o TR
7.1.1. (TS 11 = T
7.1.2. L0 011 0] 1T
7.13. Property Procedures and Methods
7.14. L ESoX= 100 o [0 [T

7.2. (00 [T PP PRRTR PRSP 13
721 == o S o o PR 13

7.3. (0] 0010 01 1 11 oo T PUPSRRSPPRRR 13
7.3.1. ProCEAUINE HEAAEIS ...ttt sttt et e bbb et be b e e e b et e be st asssbs st sbesbasssrsasabens 13
7.3.2. IN=LINE COMIMENLS......coiiiitiieiiieseei ettt sttt se e b et e st ae s b e e s be b e se s b e b e besbebesbs st e besbassebs st abesbssssbesbasssrnasabess 14

8. CONTROLSE& MENUS ..., 14

8.1. NN =T 0 0T T SRS

8.1.1 (O] 11 (0] E= S

8.12. Custom and Derived Controls
8.1.3. LY 1= [0 ST

S ©7o o |1 oo [PPSR 18
821 USE Of CONEIOI ATTAYS ..o iurieererreerreessises sttt e es et bbb 18
9. VW ARIABLES ...ttt ittteittee sttt sit e s sttt e sat e s st e e s bt e e st e e s ate e e eabe e e aab e e e sbe e s neeeeabeeesabeeenabeeennbeeenaneas 19
LS 0 R N = 1 1o T SRS
911 GENETAL.....eeeeeeeee ettt b bbb s R SRR SRR

912 Scope and Usage Indicators
9.13. Data Type Indicators

9.14. Objects ..o,
9.15. Special Context Tags
9.16. Use DesCriptive VariabDl@ NAIMES ..ottt bbb a et s s 23

9.1.7. Boolean Variables
9.1.8. Loop-Index Variables

S ©70 o |1 oo [TP
921 DECIArE All VAITADIES ...ttt s
922 Place Each Variable Declaration on a Separate Line
9.23. Declare Variables as a Specific Data TYPe........coceveeernerernernennn.

9.24. Use Explicit Scopein Variable Declaration...........cc.ccoveeenerneneen.
9.25. Use Variables for One and ONlY ONE PUMPOSE.........occueerreirnmerseesseessesessessssssessssssssssess s sssesssssssessssenns

1SRG O @70 4111 01= o 111 o o T PP 24

10. EINUMERATIONS ... tttee e ettt e e ettt e e e stee e e s e are e e e s aate e e s e saaeeeeessseeeesanneeeesaassaeeeeanseeessanneneenans 25
0 I 10111 o o USSP PPRTRTPROPRI 25
11. USER DEFINED TYPES (STRUCTURES) ..c.vveteeuteeteesteetesseesseessesseesseessessesssessssssssssesssessessnes 25
I 0 T A= 0 11 o PR SUTRSR 25
12. CONSTANTS et eetteee e e ettt e e e eett e e e e e ebeeeeeeeareeeesabaeeeeaassaeeesasreeessassseeesanssseeesasreeassassseeesannsenens 25

Programming Standards.doc iV January 4, 2002

Visual Basic 6.0 Development Standards and Guidelines

10220 T -0 11 o PRSPPI 25
i ©o o [T BT OPEUP R PPRTRUPRRPRI 26
13. MESSAGE BOXES.......uuiiiiiiiieeeieiieeeeesttee e s esate e e e s sste e e e essaae e e s anssaeaesansseeesesssaeeesanssneessnnssnnenans 26
IR 70 I oo [o o PR SUTRRR 26
131.1. INfOrMAation MESSAGE BOX.....c.cuviruciriiiicie ettt ettt bttt a et es st 27

131.2. Warning Message Box
13.1.3. Critical Message Box

14. DATABASES AND STORED PROCEDURES.....uuttiiiieeiiiiittirerieeesssssssssssesseessssssssssssssssssssssns 28
I O -0 111 T SRR 28
14.11. I 0= TP 28
14.1.2. o PR 28
14.1.3. SOQL Server StOred PrOCEAUIEScceueveieieeieiee e ese ettt ettt bbb be bbb bbb se bt et ebesebebesesetebesasatesenas 29
12 3 O oo [o o PSPPSR 29
I T - o] 1= Vo [= o TR 29
14.3. COMMENTING...eiiitiieitieeittie et ee ettt et e et e e bt e e e be e e abe e e sbeeeanbeeeanbeeessbeeeanneesnnneeans
1431 TADIES AN FTEIUS.......ceieecccccccc sttt e b s st ebeaa s et et esasntebesnsntesanas
1432. Stored Procedures
15. ACTIVE SERVER PAGES......cciiiiititeeeeiieeeeesitteeessssteeesssssseseasssessssssssseesasssnessssnsssssssnsssenesans 31
LS 0 I =0 11 o PR SUTSR 31
0 O = o - TR 31
1512, UseVisua Basic Naming StanNdards...........ccccceeeeueniniiieieiiensesessessse et ssssssssessssssssesssssssssssssssssessssssssesenns 32

1513. Declare All Variables
1514. Scopeand Usage Prefixes for VBScript

S O o [T BT OPEP RO PPRTRUPRTOPRI 32
1521, Microsoft StandardS AGOPLEA ..o 32
1522, Tag and AtIDULE FOMMIBES.cccrireeercrreerees et 33
1523, Keep BlOCKS Of SCIHPE TOGEINETccviricricirecrie st 33

15.3. COMMENTING . ..eiiiitiiiiiieeitiie ettt et e et e e be e e s be e e ssbe e e snbeeesnbeeesnbeeennneesnnneeans 33

Programming Standards.doc \Y January 4, 2002

Visual Basic 6.0 Development Standards and Guidelines

Visual Basic 32-bit Application Development
Standards and Guidelines

1.

INTRODUCTION
In my search for guidance on programming standards, | found many “parts’ of stlandards. Naming
conventions, best programming practices, commenting guiddines. But | did not find asngle,
comprehensive source of Visua Basic standards and guiddines that would help me in my day-to-
day work. This document is an atempt to pull together the myriad sources of information that |
found into a Single document that covers every areal found aneed for (and afew | was't surel
needed). In some cases, the listed standards were lifted dmost verbatim from various reference
documents (see Acknowledgements). In other cases, bits and pieces from different sources were
put together to form a single, comprehensive standard. When sources were in conflict, | chose the
one that made the most sense to me. As such, this document is and will remain a“living” document,
subject to revisions, additions, and deletions, as | learn more and receive feedback. Because of the
disparate sources used in the development of these guidelines, some contradictions may exist.
Feedback on any contradictions would be appreciated, so that they can be resolved.

These coding standards and guiddines are intended to provide a framework for development of 32-
bit applications for the various Microsoft Windows operating systems using Microsoft’ s Visua
Basic. Spexific gpplications may require additions to these guiddines for gpplication unique
requirements. These additions should be documented and maintained during the life cycle of the
goplication.

A comprehensive coding standard encompasses dl aspects of code congtruction and, while
developers should exercise prudence in its implementation, it should be closdly followed. Completed
source code should reflect a harmonized style, asif asingle developer wrote the code in one
sesson.

ACKNOWLEDGEMENTS
This document owes much to the Application Development Standards and Guidelines developed by
IHS Professiond Services, and kindly provided on their developer’ s FTP site at
ftp.mindspring.com/users/paguette. Other sources of ingpiration and guidance are the Sample
Development Standards provided by Deborah Kurata of InStep Technologies, Inc. on her website
at http:/Amww.insteptech.comv/, and Steve McConnell’ s wonderful book, Code Complete, which
first convinced me that | needed development standards. Various articles, whitepapers and other
documentation available through the Microsoft Developer Network
http://mww.msdn.microsoft.com were o heavily used in the preparation of these coding
standards.

Programming Standards.doc 1 January 4, 2002

Visual Basic 6.0

3. REFERENCES

Development Standards and Guidelines

All developers are encouraged to read Code Complete, A Practical Handbook of Software
Construction by Steve McConndll. The sections on commenting code and code reviews are

particularly important.

The Visual Basic Programmer’s Guide to the Win32 API, by Danid Appleman, is an excelent
resource. Developers should consider this book as part of their Visua Basic documentation.

4. GENERAL CONVENTIONS

4.1. Naming

4.1.1. Purpose

The intent of these naming conventionsis to permit any developer to understand the
important characterigtics of any given object without having to search through code
to ascertain that information. Each class of objects uses specific conventions to
provide thisinformétion.

4.1.2. Visual Basic Intrinsc Naming Rules

4.1.2.1.

4.1.2.2.

4.1.2.3.

4.1.2.4.

4.1.2.5.

Names must begin with aletter
Names must contain only letters and/or numbers

Names may contain the underscore () character but not spaces or
other punctuation marks

Names can be aslong as 40 characters

Visua Basic reserved words may not be used as names.

4.1.3. General Naming Guidelines

4.1.3.1.

4.1.3.2.

4.1.3.3.

4.1.3.4.

Each name will use a predefined prefix to identify the object or varigble
type. These prefixes are defined in the sections that follow.

Thefirgt character following the prefix in aname will be an upper case
|etter.

The use of upper and lower case letters, numbers, and underscoresin
names are encouraged to improve readability.

While names may be up to 40 charactersin length, developers are
encouraged to use the minimum length possble without sacrificing

Programming Standards.doc

2 January 4, 2002

Visual Basic 6.0

4.1.3.5.

4.1.3.6.

4.1.3.7.

4.1.3.8.

4.1.3.9.

4.1.3.10.

4.2. Coding

Development Standards and Guidelines

readability. Name lengthsin the range of 9 to 15 characters are
considered optimal.

Names should be chosen that are clear and unambiguous.

Names should reflect the red world nature of the object rather than use
computer or data processing terms.

Avoid homonyms to prevent confusion during code reviews, such as
write and right.

Minimize the use of abbreviations. If abbreviations are used, be
consgtent in their use. An abbreviation should have only one meaning
and likewise, each abbreviated word should have only one
abbreviation. For example, if usng min to abbreviate minimum, do so
everywhere and do not later use it to abbreviate minute.

Avoid reusng names for different dements, such asaroutine caled
ProcessSales() and avariable called iProcessSales.

When naming dements, avoid usng commonly misspelled words. Also,
be aware of differences that exist between American and British
English, such as color/colour and check/cheque.

4.2.1. General Coding Considerations

4.2.1.1.

4.2.1.2.

4.2.1.3.

4.2.1.4.

Always code for clarity, not efficiency.
Choose variable and function names carefully.
Write your code for the reader.

Size and speed of code, while important, are secondary to readability
and, more importantly, maintainability

4.2.2. Required Visual Basic Environment Options

The following options should aways be set in the IDE. All other IDE environment
options may be st at the developer’ s discretion:

Auto Syntax Check Checked

Require Variable Declaration Checked

Programming Standards.doc

3 January 4, 2002

Visual Basic 6.0

4.2.3.

4.2.4.

Development Standards and Guidelines

Auto [ndent Checked

Tab Width 4

Save Filesas ASCII Text. Save form (.FRM) and module (.BAS) filesas ASCII
text to facilitate the use of version control systems and minimize the damage that can
be caused by disk corruption. To have Visud Basc dways save filesas ASCII
text, from the Environment Options didog, set the Default Save As Format option
to Text. In addition, this dlows you to:

use your own editor

use automated tools, such as grep

create code generation or CASE toolsfor Visud Basc
perform externa andysis of your Visud Basc code

Path Names

Peath names will not be hard-coded into any application, unless required by the
customer. Provisons must be made that permit the application to ascertain or
permit the user to select any required file path information. All path names should
use the Universa Naming Convention (UNC) (\server\sharé\directory) for shared
drives. Mapped drive letters should be avoided unless provided asinput from the
user. User documents and user output files should be placed in the My Documents
directory by default. Placing user output filesin a subdirectory under My
Documents is acceptable.

Global Modules

While the mgority of modules in an application will be class modules, there will be
certain standard modules, described below, for each application. The number of
globa modules will be based on the needs of the application, but should be
minimized in favor of cdlass modules

<EXENAME>.BAS

This module, named as the gpplication EXE, will contain an overview description of
the gpplication, enumerating primary data objects, routines, algorithms, dialogs,
database and file system dependencies, and so on. It will also contain dl
documentation for specid naming conventions including gpplication specific
contexts. In addition, it will contain any application specific public congtants.

BEGINEND.BAS

Thismodule will containthe sub Mai n() and Sub Exi t App() proceduresaong
with related startup and shutdown procedures. All applications will have their
dartupin Sub Mai n() . All gpplications will have asngle exit point in Sub

Programming Standards.doc 4 January 4, 2002

Visual Basic 6.0

4.2.5.

Development Standards and Guidelines

Exi t App() containing al necessary housekeeping code required for anormal
gpplication shutdown. All application exit points must cdl this procedure.

M odification of Existing Sour ce Code

When modifying an existing gpplication, al new code should follow these coding
standards. Existing code should be changed to be in accordance with these
standards during modification if the time required to do the modificationsis not
excessve, and if the modifications do not have a high likelihood of introducing bugs
into the application.

4.3. Commenting

4.3.1.

Purpose

Code, when well written, should be self-documenting; however, sdf-documented
code cannot possibly describe the devel oper’ sintert or explain an dgorithm or
section of logic! Therefore, comments are required to ensure that the code can be
maintained by communicating this type of information. Comments must
communicate information and not what code is coming next. Developers should
document their code liberaly with in-line comments. Comments should dlow a
different developer to understand the purpose and function of the code including its
relationship to other code modules.

Make it a practice to write comments at the same time that (or earlier than) you
write your code. Some devel opers write the comments for dl of their procedures
before they write asingle line of code. It can be very effective to design procedures
using only comments to describe what the code will do. Thisisaway to sketch out
aframework for a procedure, or severd related procedures, without getting bogged
down in the details of writing the code itsdlf. Later, when you write the code to
implement the framework, your origina high-level descriptions can be effective
comments. Whatever technique you use, dways enter or revise your comments as
soon as you write the code. Never “saveit for later,” because there will often never
betimeto doit later, or if thereis, you will not understand the code as well when
you come back to it a some other time.

Refer to the section on commenting in Code Complete, A Practical Handbook of
Softwar e Construction by Steve McConndl. This section gives practical guidance
on how to comment code.

Programming Standards.doc 5 January 4, 2002

Visual Basic 6.0

Development Standards and Guidelines

4.3.2. General Commenting Guidelines

4.3.2.1.

4.3.2.2.

4.3.2.3.

4.3.2.4.

4.3.2.5.

4.3.2.6.

4.3.2.7.

4.3.2.8.

4.3.2.9.

4.3.2.10.

4.3.2.11.

4.3.2.12.

4.3.2.13.

Comment as you code, because most likely there won't be timeto do it
later. Also, should you get a chance to revist code you ve written, that
which is obvious today probably won't be obvious six weeks from
now.

When modifying code, dways keegp the commenting around it up to
date.

Avoid using clutter comments, such as an entire line of asterisks.
Instead, use white space to separate comments from code.

Avoid surrounding ablock comment with a typographicd frame. It may
look attractive, but it is difficult to maintain.

Prior to deployment, remove al temporary or extraneous comments to
avoid confusion during future maintenance work.

If you need comments to explain a complex section of code, examine
the code to determineif you should rewriteit. If possible, do not
document bad code—rewrite it. Although performance should not
typicaly be sacrificed to make the code smpler for human
consumption, a balance must be maintained between performance and
maintainability.

Use complete sentences when writing comments. Comments should
clarify the code, not add ambiguity.

Avoid the use of superfluous or inappropriate comments, such as
humorous sidebar remarks.

Use comments to explain the intent of the code. They should not serve
asinline trandations of the code.

Comment anything that is not readily obviousin the code.

To prevent recurring problems, dways use comments on bug fixes and
work-around code, especidly in ateam environment.

Use comments on code that consists of loops and logic branches. These
are key areasthat will assst the reader when reading source code.

Throughout the gpplication, construct comments using a uniform style,
with consistent punctuation and structure.

Programming Standards.doc

6 January 4, 2002

Visual Basic 6.0 Development Standards and Guidelines

4.3.2.14. Dexpitethe avallability of external documentation, source code listings
should be able to stand on their own because hard- copy documentation
can be misplaced.

5. FORMS, MODULES & CLASSES

5.1.

5.2.

Naming

Class, module, user control, and user document names (the Name property, not thefile
name) will use asingle upper case letter prefix. Formswill use the lower-case three-|etter
abbreviation frm, unless they are being used as aformd dlass, in which case they will use the
upper-case letter F.

Object Type Prefix

Form frm

Form (as Class) F

Class C

Interface I

M Standard Module
Examples

CStringUtil String class categorized as “ Util”
CError Error class

|Explorer Explorer interface class
Coding

5.2.1. Useof Option Explicit

Option Explicit must be used in every form and module. It must be the first code line
following the form/module heeder, before the declarations sections. Use of Option
Explicit will require the devel oper to explicitly declare dl variables thereby
eliminaing errorsintroduced by using misspelled variables.

5.2.2. Indentation

Codein al procedures will be indented one (1) tab stop. Code indde programming
condructssuch as1 f. .. Endl f, Sel ect Case...End Sel ect, For. .. Next,
and Do. . . Loop Will beindented one (1) additiond tab stop. Nested constructs will
be indented an additiona tab stop for each level of nesting.

5.2.3. White Space

Use white space and individud or double blank linesto indicate logical program
sections. Blank lines should separate programming congtructssuch asi . . . Endl f
and For . . . Next from surrounding code. Blank lines should also be used to

Programming Standards.doc 7 January 4, 2002

Visual Basic 6.0

5.24.

5.2.5.

5.2.6.

5.2.7.

5.2.8.

5.2.9.

5.2.10.

5.2.11.

Development Standards and Guidelines

improve readability of the code such asinlarge Sel ect Case. .. End Sel ect
congtructs.

Multiple Statements
Multiple statements should not gppear on asingle line. Even asmple If, Then should
be put on three linesfor darity.

Use of the Line Continuation Character ()

The line continuation character should be used to bresk long satementsinto multiple
lines. In generd, asingle line should be no longer than what will gppear in the code
window in the IDE.

Use of Case Statements

All Case stlatements must include a Case Else to ensure that there is a default case.
The Case Else may display an error message or log an error, if gppropriate.

Use of “Magic Numbers” or “Magic Literals”

Magic numbers (i.e., hard-coded numbersin code) and magic literds (i.e., hard-
coded strings) should be avoided. Named constants and enumerations, where
appropriate, should be used instead. Hard-coded 1s or Os may be used to
increment, decrement, and start loops, dthough a descriptive variable is preferable.

Useof “&” and “+” for Concatenation
Use the concatenation operator (“&”) rather than the plus sign (“+”) when
concatenating strings. Use the plus sign (“+”) when working with numeric vaues.

Use of An Object’s Default Property

When referring to an object without referencing a property, the default property of
the object is being invoked. Using an object’ s default property makes the code less
maintainable. Therefore, devel opers are to always use an object’ s specific property
rather than its default property.

Use of GoTo

Theuse of GoTo can make code more difficult to follow and more difficult to
maintain. Therefore, GoTo should only be used as part of the On Error statement
and to enforce a single exit point for each procedure.

Useof IIf

In generd, the lIf (immediate if) function should not be used. If it isto be used, it
should be thoroughly tested to ensure that the tests are being evauated as
anticipated.

Programming Standards.doc 8 January 4, 2002

Visual Basic 6.0

5.2.12.

5.2.13.

5.2.14.

Development Standards and Guidelines

Single Exit Point

All procedures, regardless of their type will have one and only one exit point. This
isone of the very few timesthat GoTo shoud be used. If aprocedure has multiple
conditions for an exit, each condition should end with aGoTo statement. The GoTo
labd for this case should be‘Cl eanExi t’. Theexit labe should be positioned
just before the section of housekeeping code prior to the exit.

Class Initialization

The Visua Basic form and class modules have a Class object having two events,
Initidize and Terminate. These events are fired only once each a the indantiation
and termination of the object represented by the class. Unfortunatdly, the Initidize
event does not have any parameters, therefore, it can not be used to initidize the
object using passed-in datathat is available only at runtime. To get around this
limitation, any class having the requirement to be initidized using data not available
to the object will have amethod named InitidizeObject. This method may have any
parameters necessary to complete initidization of the object. It isto be invoked
immediately following the creation of the object.

Error Handling

Procedures will use an error trap for expected and unexpected run time errors.
Developers may exercise their judgment and decide that a generd or event
procedure is Smple enough that error handling is not necessary; however, dl
proceduresin ActiveX components must use error trgps. Handling of those errors
is left to the developer’ s judgement.

Our generd error handling philosophy will be to handle errors at the lowest level
possible without user intervention. Failing that, dl errors will be passed up to the
user interface and displayed for the user. As each routine is written, sometime
should be spent finding the most common errors and writing code to handle them
properly in that routine.

Every effort will be made to handle errors within a procedure. When thisis not
possible, error conditions will be raised back up to the calling procedure using
gppropriate implementations of the Err.Raise method available in a sandard
ActiveX component. Refer to the Programmer’ s Guide in the VB documentation
for adiscussion on error handling with ActiveX objects.

GoTo should beused asaclauseintheon Error statement. When used, the on
Er r or Statement should be thefirdt line of code following the variable declarations
inaprocedure. The GoTo labd should be ‘Er r or Handl er .

When an error condition is detected within the code (not from aruntime error), a
different GoTo label made up of the procedure name with ‘Er r * appended to the

Programming Standards.doc 9 January 4, 2002

Visual Basic 6.0

Development Standards and Guidelines

end may be used if the error handling requirements are different between detected
error conditions and runtime errors.

The error numbers should be the VB errors when appropriate. For errorsthat are
not VB errors, such as vaidation or business rule violations, an error number should
be defined. The error number must be generated greater than vbObjectError + 512.
The errorsthat can be generated by a class should be exposed to the other parts of
the gpplication usng an ENUM statement.

5.3. Commenting

5.3.1. Module, form and class headers

Will be placed asthefirg entry in the declarations section of thefile. Opti on

Expl i ci t mustimmediady follow the heeder. The declaration sections follow the
Option Explicit Saement. Declarations will be in the order shown in the
sample file header. All public declarations should precede file level declarationsin
each section where such digtinctions can be made.

‘ Creat ed: 03/ 15/ 99

* Aut hor : Joe Progranmer

‘Description: Description of file; Include sufficient

) info to clearly describe the conponent
‘ Dependenci es: Li st any ot her dependent conponents

‘| ssues: Li st known issues, problens, etc.

Option Explicit

‘ Constant Decl aration Section

Programming Standards.doc 10 January 4, 2002

Visual Basic 6.0

5.3.2.

Development Standards and Guidelines

Code M aintenance Comments

Code maintenance comments will not be used until the * code complete’ milestone.
After that point, the following commenting will be used.

A code maintenance section will be appended to the file header under the Code
Maintenance Log section to identify and summarize the changes made to thefile.
Use the following format:

Place this comment block under the Code Maintenance Log section in the file
header for each maintenance action. Use AFTER the “code complete” milestone.

‘ Devel oper: Joe Progranmer

‘ Change Dat e: 06/ 05/ 99

‘ Ref erence: Put in, as appropriate, any problem
report or bug references. If the
change is an enhancenent, indicate it
as such.

‘Description: Put in a brief description of the

change(s) nmde.

If the versgon control tools being used provide the capability to automatically add
thisinformation, use the tool’ s format rather than the one above.

In the procedure where the changes are made, the devel oper must add an entry to
the history section of the procedure header to include the devel oper’ s name, the
date of the change, and a brief comment describing the changes including any bug
numbers. Refer to the example below:

‘Date Devel oper Comrent s
*03/15/99 J. Programrer Initial creation
* 05/ 24/ 99 J. Programrer Bug 1234; Changed col um nanes

to new nam ng standards

At the actud location in the code where the changes are made, the developer isto
add a comment block showing “**”, thelr initids, the date, and the bug number or
other reference in the first comment line. Use subsequent comment lines to describe
the actual changes. . Refer to the example below:

“JP 05/24/99 — Bug 1234

‘ Change the query colums in the SQ statenent
‘to correspond to the new nanm ng standards.

Programming Standards.doc 11 January 4, 2002

Visual Basic 6.0

Development Standards and Guidelines

6. PROCEDURES AND FUNCTIONS

6.1. Naming

6.1.1.

6.1.2.

6.1.3.

6.1.4.

General

Public and private subroutines, functions, and methods will generdly follow a
<verb><object> syntax, such as OpenFile or WriteReport, usng mixed case.

Functions

6.1.2.1. Public and private function procedures will use the <verb><object>
naming convention.

6.1.2.2. Functionswill include athree-letter lower case prefix to indicate the
data type that the function returns. The function data type prefix will use
the same | etters as the variable data type prefix or context tag. Public
Function procedures used as class methods will NOT use the datatype
prefixes.

6.1.2.3. When naming functions, include a description of the vaue being
returned, such as Get Cur r ent W ndowNarre() .

Property Proceduresand Methods

Class property procedures and public Sub and Function procedures used as class
methods will NOT use the datatype prefixes. In addition, parameters of public
property or public method procedures will NOT use the datatype prefix. In some
cases, asingle <verb> is an acceptable public Sub or Function procedure name,
such as Move or Add. Names will follow standard Windows conventions for
properties and methods. All method names will follow the <verb><object> naming
convention.

NOTE: All event procedures are generated by Visua Basic for forms and controls.
These event procedures are private to the form containing them and are
automatically named based on the form or control name and the event. The above
naming conventions do not apply to event procedures. However, the above
conventions do apply to eventsthat are created as part of classes by a developer.

Filesand Folders

File and folder names, like procedure names, should accurately describe what
purpose they serve.

Programming Standards.doc 12 January 4, 2002

Visual Basic 6.0 Development Standards and Guidelines

6.2. Coding

6.2.1. Keep It Short

In generd, routines should not be longer than one screen page. Routines longer than
one screen should be broken down into subroutines.

6.3. Commenting

6.3.1. Procedure Headers

All procedures and functions will have a sandard header comment section
immediately following the Sub, Function, or Property statement. A varigble
declaration section will immediately follow the procedure header. Congtants will
come firgt in the declarations section followed by variables.

Usefor dl property, method, generd function, and genera sub procedures.

‘ Pur pose: What the routine does (not how)

‘I nputs: Each non-obvi ous paranmeter on a separate |line
' with in-line coments

* Assunes: Li st of each non-obvious external variable,

) control, open file, and so on.

‘Returns: Expl anati on of value returned for functions.

‘Effects: Li st of each affected external variable, control
) file, and so on, and the affect it has (only
if this is not obvious

‘Date Devel oper Comrent s
*03/15/99 J. Programrer Initial creation

‘Local Constant/ Variabl e Decl arati on Section

The header for general procedures will contain aclear description of the procedure
and a description of each parameter and any return values. A maintenance line will
aso be included containing the date of the change activity, the developer’ s name,
and abrief description of the change activity. During development, only aline for
procedure creation will be used. When the application enters the maintenance
phase (after “code complete”’), the maintenance lineswill beincluded. These
headers will be placed in al user defined genera procedures.

The header for event procedures will only contain maintenance lines containing the
date of the change activity, the developer’s name, and a brief description of the
change activity. These headers will be placed in al event procedures that contain
code. During development, only aline for procedure creation will be used. When
the application enters the maintenance phase (after “code complete”), the
maintenance lineswill beincluded. They are NOT to be placed in event procedures
that DO NOT contain code.

Programming Standards.doc 13 January 4, 2002

Visual Basic 6.0

6.3.2.

Development Standards and Guidelines

I n-Line Comments

Comment as you code. Makeit apolicy to change the comments when the purpose
of the code changes. In-line comments for describing particular lines of code, or a
group of code lines such as loops, will congst of the comment block with no specid
comment line before or after it. A blank comment line should precede the comment
block, and there should be no blank lines between the comment block and the code
towhich it refers. It will be congtructed as follows:

‘Coment goes here. Use as many |lines as necessary,
‘being sure to start a new line so the coment is

‘visible in a typically sized code w ndow

7. CONTROLS & MENUS

7.1. Naming

7.1.1.

Controls

The default control names provided automaticaly by the development environment
WILL NOT be used asthe control name. Instead, create a name using a prefix to
identify the type of control with a name that adequately describes the function or
purpose of the control. The prefix for standard Visua Basic controlswill consst of
three (3) lower case letters followed by the field name.

The following table contains prefixes for the Visud Basic controls.

Prefix Control Example

ani Animated Button aniPhoneConnect
bed Pen BEdit bedName

cbo Combo Box cboTypeCode
chk Check Box chkReadOnly

dp Picture Clip clpToolBar

cnd Command Button (3D) cmdOK (cmd3dOK)
com Communications comCommPortl
ctl Control (when type unk) ctlUpdate

dat Data Control datClient

dbc DBCombo (data- bound) dbcState

dbg DBGrid (data- bound) dbgRegister

dbl DBLig (data-bound) dblTitle

dir Directory List Box dirSource

dig Common Didog digBrowse

Programming Standards.doc 14 January 4, 2002

Visual Basic 6.0

Development Standards and Guidelines

Prefix Control Example

drv DriveLigt Box drvTarget

fil FleList Box filSource

fra Frame (3D) frallserOptions
(fraBdUserOptions)

gau Gauge gauProgress

gpb Group Push Button gpbChannel

gra Graph graSdesYTD

grd Grid grdToDo

hed Pen HEdit hedSignature

hsb Horizontd Scroll Bar hsbVolume

ili ImageLig Item iliToolBarButton

ils Imagelist ilsToolBarlmages

img Imege imglcon

ink Pen Ink inkMap

key Key State keyCapsl ock

bl Label IblLastName

lin Line linDivider

Ist List Box |stStates

Ivi Ligt View Item lviUserName

Ivw Lig View IvwNames

mci Multimedia MCI mciMM Control

mnu Menu Option mnuHleExit

mpm MAPI Message mpmMAPIMessage

mps MAPI Sesson mpsMAPISesson

msK Masked Edit mskWorkPhone

oe OLE Client oleWordDoc

opt Option Button (3D) optPrefix (opt3dPrefix)

out Outline outGroupMembers

pic Picture Box picToolBar

pnl 3D Panel pnl StatusBar

prg ProgressBar prgPrinting

rpt Crystal Reports Control rptMallingLabels

rtf RichTextBox rtfNotes

dp Shape shpSquare

dd Sider dadvVolume

spn Spin Button spnCopies

sta StatusBar staMessage

tab Tab tabSettings

tbs TabStrip tbsOptions

tlb ToolBar tibMain

Programming Standards.doc

15

January 4, 2002

Visual Basic 6.0

Development Standards and Guidelines

Prefix Control Example

tmr Timer tmrTrigger

tvn TreeView Node object tvnPart

tvw TreeView tvwPartList

txt Text Box txtLastName

upd UpDown updVolume

vsh Verticd Scroll Bar vshMouseSensitivity

7.1.2. Custom and Derived Controls

For new controls not listed above, try to come up with a unique three character
prefix. However, it is more important to be clear than to stick to three characters.

For derivative controls, such as an enhanced list box, extend the prefixes above o
that there is no confusion over which control is redly being used. A lower-case
abbreviation for the manufacturer would aso typicaly be added to the prefix. For
example, acontrol instance created from the Visua Basic Professond 3D frame
could uses a prefix of fra3d to avoid confusion over which control isredly being
used. A command button from MicroHe p could use cmdm to differentiate it from
the stlandard command button (cmd).

The prefix for third party custom controls will consist of three (3) lower case letters
followed by an additiona lower case letter or number (chosen as a unique identifier
for the st of custom controls) followed by the field name. If the custom control isa
replacement for astandard contral, the firdt three lettersin the prefix should be the
same as the standard control. If the custom control is a unique control, athree-
letter prefix must be chosen and used consistently throughout the gpplication.

All new control prefixes should be documented as part of the project
documentation on which they are used, induding liging them in the

<EXENAME>.BASfile. Usng the following format:

Prefix
cmdm

The following table lists standard third- party control prefixes:

Cont r ol
Command Button

Type

Vendor
M cr oHel p

Control Type | Control name | Prefix | Vendor Example VBX Filename
Alam Alam dmm | MicroHdp | dmmAlam MHTI200.VBX
Animate Animate anm MicroHelp | animAnimate MHTI200.VBX
Callback Callback cadm MicroHelp | camCallback MHAD?200.VBX
Combo Box DB_Combo cbop Pioneer cbopComboBox QEVBDBF.VBX
Combo Box SSCombo cbos Sheridan cbosComboBox SS3D2.VBX
Check Box DB_Check chkp Pioneer chkpCheckBox QEVBDBF.VBX
Programming Standards.doc 16 January 4, 2002

Visual Basic 6.0

Development Standards and Guidelines

Chart Chart chtm | MicroHdp | chtmChart MHGR200.VBX
Clock Clock cdkm MicroHelp | dkmClock MHTI200.VBX
Button Command cndm | MicroHdp | emdmCommandButton | MHEN200.VBX
Button
Button DB Command | cmdp | Pioneer cmdpCommandButton | QEVBDBF.VBX
Button (Group) | Command cngm | MicroHep | cmgmBtton MHGR200.VBX
Button(multiple)
Button Command anm | MicroHdp | emimCommandButton | MHEN200.VBX
Button(icon)
CardDeck CardDeck cdm | MicroHdp | crdmCard MHGR200.VBX
Dice Dice dicm MicroHelp | dicmDice MHGR200.VBX
List Box (Dir) | SSDir dirs Sheridan dirsDirLigt SS3D2.VBX
Lis Box (Drv) | SSDrive drvs Sheridan drvsDrivelist SS3D2.VBX
Lig Box (File) | FleLig film MicroHdp | filmAleLig MHEN200.VBX
Lis Box (File) | SSFile fils Sheridan filsHlelis SS3D2.VBX
Hip Hip flpm MicroHelp | flpmButton MHENZ200.VBX
Scroll Bar Form Scroll fam MicroHep | fsrmFormScroll ?77?
Gauge Gauge gagm | MicroHdp | gagmGauge MHGR200.VBX
Graph Graph gpho Other gphoGraph XYGRAPH.VBX
Grid Q Grid grdp Pioneer grdpGrid QEVBDBF.VBX
Scroll Bar Horizontal hsom | MicroHdp | hsomScroll MHENZ200.VBX
Scroll Bar
Scroll Bar DB_HScrall hsbp Pioneer hsbpScroll QEVBDBF.VBX
Graph Histo hstm MicroHelp | hamHistograph MHGR200.VBX
Invisble Invisble invm MicroHelp | invminvisble MHGR200.VBX
List Box Icon Tag itgm MicroHdp | itgmListBox MHADZ200.VBX
Key State Key State kstm MicroHdp | kamKeyState MHTI200.VBX
Label Labdl (3d) lblm MicroHelp | IblmLabd MHEN200.VBX
Line Line linm MicroHelp | linmLine MHGR200.VBX
Ligt Box DB Lig Istp Pioneer IstpListBox QEVBDBF.VBX
Ligt Box SSLig Ids Sheridan |stslistBox SS3D2.VBX
MDI Child MDI Control mdcm | MicroHep | mdemMDIChild
Menu SSMenu mnus | Sheridan mnusMenu SS3D3.VBX
Marque Marque mrgm | MicroHdp | mrgmMarque MHTI200.VB
Picture OddPic odpm | MicroHdp | odpmPicture MHGR200.VBX
Picture Picture picm MicroHelp | picmPicture MHGR200.VBX
Picture DB _Picture picp Pioneer picpPicture QEVBDBF.VBX
Property Vwr | Property pvim | MicroHelp | pvrmPropertyViewer MHPR200.VBX
Viewer
Option (Group) | DB_RadioGrou | radp Pioneer radgRadioGroup QEVBDBF.VBX
P

Programming Standards.doc

17

January 4, 2002

Visual Basic 6.0

Development Standards and Guidelines

Sider Sider ddm MicroHdp | ddmSlider MHGR200.VBX
Button (Spin) | Spinner sonm | MicroHdp | sonmSpinner MHEN200.VBX
Spreadsheet Spreadsheet sprm | MicroHelp | sprmSpreadsheet MHAD?200.VBX
Picture Stretcher strm MicroHelp | strmStretcher MHADZ200.VBX
Screen Saver | Screen Saver svrm MicroHelp | svrmSaver MHTI200.VBX
Switcher Switcher svtm | MicroHelp | swtmSwitcher ?7?
List Box Tag tagm MicroHdp | tagmListBox MHEN200.VBX
Timer Timer tmrm | MicroHdp | tmrmTimer MHTI200.VBX
ToolBar ToolBar tolm MicroHelp | tolmToolBar MHADZ200.VBX
Ligt Box Tree trem MicroHelp | tremTree MHEN200.VBX
Input Box Input (Text) txXtm MicroHelp | inpmText MHENZ200.VBX
Input Box DB Text txtp Pioneer txtpText QEVBDBF.VBX
Scroll Bar Verticd Scroll | vebm | MicroHelp | vsbmScroll MHENZ200.VBX
Bar
Scroll Bar DB _VScrall vshp Pioneer vsbpScrall QEVBDBF.VBX
7.1.3. Menus
Dueto ther unique hierarchicd nature, menus have additiona naming requirements.
Captions on the menu bar must be one word to conform to Windows standards.
Captions of menu options and sub menu options should be no longer than two
words. Menus should normally have only one level of sub menu options under any
given menu option. Menu names consist of the prefix followed by the menu bar
caption and the menu option caption. For example, the Exit menu option under the
Fle menu would have a menu name of mnuFleExit. For menu options with two
word captions, remove the space between the two words. For example, the
Specid Paste menu option under the Edit menu would have a menu name of
mnuEditSpeciaPaste. To distinguish between menu options and sub menu options,
insert an underscore character between their names. For example, the Link sub
menu option under the Specia Paste menu option would have a menu name of
mnuEditSpecidPaste Link.
7.2. Coding
7.2.1. Useof Control Arrays
When feasible, use control arrays instead of separately named controls. An
enumeration should be defined to dlow the individud controls to be referenced by
name, rather than index number. Unless you anticipate needing to reference labels
extensvely, an enumeration is not required for labe control arrays. Remember that
control arrays need not contain sequentia index number, nor do the index numbers
need to start at 0. The benefits of this technique are:
Programming Standards.doc 18 January 4, 2002

Visual Basic 6.0 Development Standards and Guidelines

Speed. When VB creates the controls, it only hasto create one of the controls
in the contral array. Thisincreased the limit on the number of controls you can
have on aform and improves performance.

Y ou get one event procedure for the control array instead of one for each
control. This prevents duplicate code.

It iseasier to work through a set of controlsthat arein an array. Y ou can cycle
through them using For Each/Next to move them or set their properties.

8. VARIABLES
8.1. Naming

8.1.1. General

All varidbles, including arrays, will be given athree-part name, conssting of a
lower-case scope indicator (two characters), alower-case data type indicator
(three characters) and a mixed- case variable-length descriptive name. Single letter
variable names (such asi, j, and k) will NOT be used.

8.1.2. Scopeand Usage Indicators

The scope and usage indicator will consst of one (1) lower case letter prefix
followed by an underscore () to indicate the scope of the varigble. Loca
(procedure-level) variables will NOT use a scope indicator.

Scope I ndicator Prefix
Public (globd) g
Class o
Module (includes m_
form-levd varigbles)

Static varidble Sl
Local (none)
Parameter (arguments | p_

in procedures and

functions)

Parametersin public class property or method procedures will NOT use ether the
scope or data type prefixes.

Programming Standards.doc 19 January 4, 2002

Visual Basic 6.0

8.1.3. Data Typelndicators

Development Standards and Guidelines

Data Type Indicator Prefix
Boolean Bin
Byte Byt
Integer Int
Long Lng
Snge S
Double Dbl
Currency Cur
String (text) Str
Date(Time) Dte
Vaiant Var
Form (parameter passed “As Form’) | Frm
Control (parameter passed “As Ctl
Control”; usethe control prefix for

gpecific controls such as “txt’” for “As

Text”)

Object Obj
Collection Cal
User Control AXc
User Document Axd

Examples:

Form leve integer variable m_intObjectCount
Module leved sngle variablem_sglPercentComplete

Form levd currency variable
Classleve long variadle
Locd integer varidble
Parameter Boolean variable
Parameter control
Parameter textbox

The scope indicator will be followed by athree-letter prefix that indicates the data
type of the variable. The letters that make up the prefixes are:

m_curlnvoiceTota
c_IngltemCounter
intCounter
p_blnShowltem
p_ctlSourceControl
p_txtSourceTextBox

Programming Standards.doc 20

January 4, 2002

Visual Basic 6.0 Development Standards and Guidelines

8.1.4. Objects

When object variables are declared, using early binding is preferable. For user
objects, such as classes, identify and document the three-letter prefix that will be
used to identify that object type. Usethe “obj” prefix only when declaring a generic,
or late-bound, object variable. Use this prefix even when you are creating alate-
bound object variable that represents an Office gpplication. For example:

Di m obj XLApp As bj ect

Di m obj WDDocunent As Obj ect

Di m obj OLMai | Item As Obj ect

Programming Standards.doc 21 January 4, 2002

Visual Basic 6.0

Development Standards and Guidelines

Object variable prefixes:
ActiveX Data Objects (ADO)
Prefix Object Type Example
cnn Connection cnnMain
cnd Command cmdSalesBRegion
rst RecordSet rsCustomers
fld Hed fldAddress
prm Parameter prmAge
pro Property Pro
er Error errErrors

Data Access Objects (DAO) and Microsoft Access.

Prefix Object Type Example

db ODBC Database dbAccounts

ds ODBC Dynaset dsSalesByRegion
object

fdc Fied collection fdcCustomer

fd Field object fdAddress

IX Index object ixXAge

IXC Index collection ixcNewAge

qd QueryDef object gdSalesByRegion

ary Query SalesByRegionQry

(Qufix)

ss Snapshot object ssForecast

tb Table object tbCustomer

td TableDef object tdCustomers

Microsoft Office Automation Applications:

Prefix Object Type Example
ac Access acReport
X Excd XIApp
fp FrontPage fplnstance
mso Office Mso
bind OfficeBinder Bind
ol Outlook olNameSpace
pp PowerPoint ppPresentation
wd Word wdNewDocument
vb VBA Vb
Programming Standards.doc 22 January 4, 2002

Visual Basic 6.0

8.1.5.

8.1.6.

8.1.7.

8.1.8.

Development Standards and Guidelines

Special Context Tags

When avariableis used in aspecia context, the tag should reflect that context even
if itisone of the above variable types. Typical context tags are shown below.

Prefix Data Type | Context Tags Example
h I nteger Handle hCursor
hwnd Integer Window Handle hwndForm
hdc Integer Device Handle hdcPrinter
rc I nteger Return Code rcStatus

Other context tags may be used but must be documented in the
<EXENAME>.BAS module.

It is permissible to use just the context tag without aname (i.e, ‘rc’ rather than
‘rcStatus’) when the use of the context tag is completely unambiguous. If thereis
any chance for confusion, the full tag plus name convention will be used.

Use Descriptive Variable Names

Don't use variables names that are totaly unrelated to the variables they represent.
Variable names like Sdly, Bob and BiteMe (or txtSaly, intBob, and varBiteMe)
make your code difficult to read and maintain, no matter how clever or cute the
names are.

Boolean Variables

Boolean variables should be named to reflect the True condition, i.e. binlsNew, and
should be descriptive of what is being tested. Boolean names should not be
negdive, i.e. binNotFound. The use of the word Isimmediately following the bin
prefix is encouraged. This puts the variable name in the form of a positive statement
that is clearly True or False.

L oop-Index Variables

Loop-index variables should be given an gppropriate, descriptive name wherever
possible. For ingance, if theloop is going from 1 to the maximum number of
records, name the loop counter intMaxRecords. Be sure to choose a variable type
that is large enough to hold the largest number that loop should ever encounter;
when in doubt, use along integer. Non-descriptive loop-index varigble names (like
i,], or K) will not be used.

Programming Standards.doc 23 January 4, 2002

Visual Basic 6.0

Development Standards and Guidelines

8.2. Coding

8.2.1.

8.2.2.

8.2.3.

8.2.4.

8.2.5.

Declare All Variables

The use of Option Explicit will require dl variables to be declared by the compiler.
This option should never be removed, even during development. All variables must
be declared.

Place Each Variable Declaration on a Separate Line

Multiple varidble declarations placed on asingleling, eg, Dim y, n, b as
St ri ng, declaresy and n to be the datatype Variant, and only b to be a String.
Pacing each declaration on asingle line avoids this problem. If y and n should be
variants, that should be made explicit by declaring them on separate lines as Variant
datatypes.

Declare Variables as a Specific Data Type

All form, class, and module leve varigbles, including arrays, will be explicitly
declared as a specific data type in the declarations section of the appropriate form,
class, or module. Variables should normally be declared as one of the defined data
types rather than the variant datatype. Unless a particular requirement dictates the
use of avariant datatype, variant data type variables should be avoided.
Parameters (procedure arguments) should be explicitly declared as specific data
typesin the parameter list of the procedure declaration. Be sure to use the By val
keyword as appropriate. In addition, provide the return data type for dl Function
and Property Get procedures.

Use Explicit Scopein Variable Declaration

Variables should be declared with the Pr i vat e keyword rather than the Di m
keyword. Public variables should never be used! If a variable needs to be accessed
from outside a class, module, or form, create a property let/get/set for the variable,
as required. For routines, you may aso sdect Friend asthe scope. Thisis useful
when creating ActiveX components. All variables|oca to a Sub procedure or
Function procedure must be declared explicitly in the beginning of the procedure
usngtheDi mor st at i ¢ keywords as appropriate.

Use Variablesfor Oneand Only One Pur pose

Variables should not be “reused” for different purposes. One variable should be
declared for each purpose. In particular, module-level variables should not be
declared in order to reuse them in place of locd variablesin routines.

Programming Standards.doc 24 January 4, 2002

Visual Basic 6.0 Development Standards and Guidelines

8.3.

Commenting

Variables should be given names that describe whét they are being used for. If avaridbleis
unclear, an in-line comment should be included dong with the variable declaration
describing the purpose of the variable.

9. ENUMERATIONS

9.1.

Naming

Enumeraions will be declared with the enumeration typein dl capitd letters and alower
case “e” prefix to digtinguish enumerations from user-defined types. The enumeration
components follow norma variable conventions except that the enumeration prefix will be
used in place of the scope and datatype prefix. The enumeration prefix will bea2-5 letter
prefix for identifying the enumeration, and it will be placed in an in-line comment on the
‘Enunt’ line. The enumeration s prefix also will be used for the data type portion of a
variable prefix, as shown below.

Example
Publ i ¢ Enum eRETURNCODE ‘rc

rcSuccessWthinfo = 1
rcSuccess = 0
rcFailure = -1
r cNoDat aFound = -7
rcNoMbreData = -8

End Enum

Public rcReturn As eRETURNCODE

10. USER DEFINED TYPES (STRUCTURES)

10.1. Naming

User defined types will be declared with the data type in dl capitd letters with their
components following norma variable conventions except that no scope prefix will be used.
A 2-5 |etter prefix for identifying the user-defined type will be placed in an in-line comment
onthe “Type’ line. It will be used for the data type portion of the varidble prefix.

Example

Type EMPLOYEE ‘enp
strNane As String
strAddress As String
strCityStateZip As String
dteHireDate As Date
curSal ary As Currency

End Type

Private m enpEnpl oyee As EMPLOYEE

Programming Standards.doc 25 January 4, 2002

Visual Basic 6.0 Development Standards and Guidelines

11. CONSTANTS

11.1. Naming

All non-variable data used in the gpplication must be defined as named congtants. Intringc
VB and VBA congtants will be used wherever applicable. These constants can be found in
the VB help file. Of particular interest are constants for specid characters:

vbCrLf [Chr$(13) + Chr$(10)]
vbCr [Chr$(13)]

vbLf [Chr$(10)]

vbBack [Chr$(8)]

vbTab [Chr$(9)]

vbNullChar [Chr$(0)]

Use these intrinsic congtants rather than the equivalent Chr$ functions. Other predefined
congtants, such as APl and type constants, should be used whenever possible.

Application specific constants will be named as appropriate using al uppercase letters,
numbers, and an underscore () between words. If agroup of constants is related, they
should have acommon prefix of up to five (5) upper case letters and/or numbers followed
by an underscore () character.

Examples

APP_NAME
CLR_BLACK
FAILURE

11.2. Coding

Named constants should be used to the maximum extent possible. The use of named
congtants will greatly improve the readability and maintainability of the source code. More
importantly, if future modifications are necessary, the constants can be changed in one
location.

The exception to usng named congants is to use Enumerations wherever a group of related
constants that represent long integer data types are required.

12. MESSAGE BOXES

12.1. Coding

Message boxes will be used throughout applications to provide feedback to the user and to
solicit aresponse from the user for specific purposes. Three types of message boxes,
described below, will be used. A fourth type, the query (question) message box, should not
be used. It currently existsin Visud Basic for backward compatibility. All message boxes
will be invoked in code with a message, the appropriate message box parameters, and the

Programming Standards.doc 26 January 4, 2002

Visual Basic 6.0 Development Standards and Guidelines

full gpplication name. The message box parameters, usng sandard Visua Basic congtants,
will be concatenated to obtain the required results. The MsgBox Statement will be used
whenever the user just needs to acknowledge the message by clicking on the OK button.
When the user is presented with multiple options such as with Yes, No, Cancel buttons, the

MsgBox function will be used in order to trgp for the return value corresponding to the
button the user selected.

12.1.1. Information M essage Box

Information messages should be used to report the results of an action or to provide
feedback to the user that cannot otherwise be provided. An example of what an

information message box should look like, and the code that invoked it, is shown
below:

My Application |

@ Mo records were found to zatisfy the queny.
(] 4 |

strMsg = “No records were found to satisfy the query.”

MsgBox strMsg, vbOKOnly + vblnformation, strAppNane

12.1.2. Warning M essage Box

Warning messages should be used to inform the user that a non-critica action
cannot be performed or an abnormal result or condition occurred. An example of
what awarning message box should look like, and the code that invoked it, is

shown below:
My Application I
& The required file could not be located.

ok |

Programming Standards.doc 27 January 4, 2002

Visual Basic 6.0 Development Standards and Guidelines

strMsg = “The required file could not be |ocated.”
MsgBox strMsg, vbOKOnly + vbExcl amation, strAppNane

12.1.3. Critical M essage Box

Criticad messages should be used to inform the user that a critica action cannot be
performed or an abnormal result or condition occurred that may cause the
gpplication to abort. An example of what a critical message box should look like,
and the code that invoked it, is shown below:

My Application B3 |

Q The databaze connection was lost during proceszing.

OF.

strMsg = “The database connection was | ost during processing.”
MsgBox strMsg, vbOKOnly + vbCritical, strAppNane

13. DATABASES AND STORED PROCEDURES
13.1. Naming
13.1.1. Tables
13.1.1.1. Tablenameswill bein mixed case, beginning with an upper case letter.
13.1.1.2. Table nameswill be decriptive.

13.1.1.3. Table nameswill bethe sngular form of the object they describe, eg.,
Part or Supplier.

13.1.2. Fidds
13.1.2.1. Fednameswill bein mixed case, beginning with an upper case letter.

13.1.2.2. Hedd nameswill be unique (within any data dictionary in which it
appears).

Programming Standards.doc 28 January 4, 2002

Visual Basic 6.0 Development Standards and Guidelines

13.1.2.3. Fednameswill be sated in the Sngular.
13.1.2.4. Fed nameswill be stated as a descriptive word or phrase.
13.1.2.5. Fed nameswill contain only commonly understood abbreviations.

13.1.2.6. When naming fields, do not repest the table name; for example, avoid
having afield called Employeel_astName in atable called Employee.

13.1.2.7. Fed nameswill use acapitd |etter to identify each word of the name-
phrase, for example LastName.

13.1.2.8. Do not incorporate the data type in the name of a column. Thiswill
reduce the amount of work needed should it become necessary to
change the data type later.

13.1.3. SQL Server Stored Procedures

13.1.3.1. Do not prefix stored procedures with sp , because this prefix is
reserved for identifying system+stored procedures.

13.1.3.2. InTransact-SQL, do not prefix variables with @@, which should be
reserved for truly globa variables such as @@IDENTITY.

13.1.3.3. Vaiables, functions and stored procedure names should follow the
Visua Basic naming conventions outlined in this document to the
greatest extent possible.

13.2. Coding
13.2.1. Tablesand Fidds

13.2.1.1. Tableswill contain aprimary key of type long integer that is unique and
meaningless,

13.2.1.2. When other tables use this key as aforeign key, the fidd name will be
identical to the primary key field name. For example, PartID isthe
primary key in the Part table. In the SupplierPart table, the foreign key
will be PartID.

13.2.1.3. All tableswill contain the User ID of the user who last saved the record.
Thefidd namefor thisfidd will dways be UserID.

13.2.1.4. All tableswill contain the timestamp of the last update. The field name
for thisfidd will aways be TimeStamp.

Programming Standards.doc 29 January 4, 2002

Visual Basic 6.0

13.2.15.

13.2.1.6.

13.2.1.7.

13.2.1.8.

13.2.1.9.

13.2.1.10.

13.2.1.11.

13.2.1.12.

13.2.1.13.

13.2.1.14.

13.2.1.15.

13.2.1.16.

13.2.1.17.

13.2.1.18.

Development Standards and Guidelines

When writing SQL statements, use al uppercase for keywords and
mixed case for database d ements, such as tables, columns, and views.

Put eech mgior SQL clause on a separate line so statements are easier
to read and edit, for example:

SELECT FirstNane, Last Name
FROM Cust oner s
VWHERE State = ‘WA

Use RETURN statementsin stored procedures to help the calling
program know whether the procedure worked properly.

Never use SELECT *. Always be explicit in which columnsto retrieve
and retrieve only the columns that are required.

Refer to fiddsimplicitly; do not reference fids by their ordina
placement in a Recordset.

Use stored proceduresin lieu of SQL statementsin source code to
leverage the performance gains they provide.

Use a stored procedure with output parameters instead of single-record
SELECT dtatements when retrieving one row of data

Verify the row count when performing DELETE operations.

Perform data validation a the client during data entry. Doing so avoids
unnecessary round trips to the database with invalid data

Avoid usng functionsin WHERE cdlauses.

If possible, specify the primary key in the WHERE clause when
updating asingle row.

When using LIKE, do not begin the string with awildcard character
because SQL Server will not be able to use indexes to search for
meatching values.

Use WITH RECOMPILE in CREATE PROC when awide variety of
arguments are passed, because the plan stored for the procedure might
not be optima for agiven set of parameters.

Stored procedure execution is faster when you pass parameters by
postion (the order in which the parameters are declared in the stored
procedure) rather than by name.

Programming Standards.doc

30 January 4, 2002

Visual Basic 6.0

13.2.1.19.

13.2.1.20.

13.2.1.21.

13.2.1.22.

13.2.1.23.

13.3. Commenting

Development Standards and Guidelines

Usetriggers only for data integrity enforcement and businessrule
processing and not to return informetion.

After each data modification statement ingde a transaction, check for an
error by testing the globa variable @@ERROR.

Use forward-only/read-only recordsets. To update data, use SQL
INSERT and UPDATE statements.

Never hold locks pending user inpuit.

Use uncorrelated subqueries instead of correlated subqueries.
Uncorrelated subqueries are those where the inner SELECT statement
does not rely on the outer SELECT statement for information. In
uncorrelated subqueries, the inner query is run once instead of being run
for each row returned by the outer query.

13.3.1. Tablesand Fidds

13.3.1.1.

13.3.1.2.

Descriptions of the purpose of each table and field will be maintained.
Table descriptions should include the source of the deta, if applicable,
and what the data represents.

Feld information should include any redtrictions on the Sze, format or
vdid vduesin thefidd.

13.3.2. Stored Procedures

13.3.2.1.

Stored procedures should follow the same commenting standards as
Visud Basic code, with modifications made only as required by the
development environment.

14. ACTIVE SERVER PAGES

14.1. Naming

14.1.1. General

Scripting languages are “loosely typed” and, consequently, dl variablesused in
script have aVariant datatype. In addition, script iswritten directly into the HTML
code behind a Web page and there are no modules used to contain code as there
arein VBA and other strongly typed languages. Findly, scripting languages do not
require that you expresdy declare variables before you use them.

Programming Standards.doc

31 January 4, 2002

Visual Basic 6.0

14.1.2.

14.1.3.

14.1.4.

Development Standards and Guidelines

Given these unique characterigtics, doesit still make sense to talk about a naming
convention in the context of writing script? Absolutdly!

The naming conventions and other coding guiddines discussed here gpply just as
well to script inan HTML page as they do to VBA code in an Office application, or
to VB code. The benefits associated with writing reusable, understandable, and
meaintainable code can be redized whether you are writing script or VB code. In
fact, there is probably more work to be done persuading script developers to pay
attention to issues of code reuse and maintainability. There are just as many benefits
to writing solid script as there are to writing solid code.

Use Visual Basc Naming Standards

Because ASP technology relies on scripting engines to do its work, and because of
the loosdly typed nature of script, naming conventions have been somewnhat fuzzy.
In srongly typed languages, variables are declared as their actud type. When using
ASP technology, it’s common practice to declare your variablesin ASP code the
way they should be treated, rather than their actua data type. For example, when
working with Visud Basc® Scripting Edition (VBScript), you would declare your
flag for success as blnlsSuccessful (bin for Boolean) rather than varl sSuccessful
(ver for Variant), even though dl VBScript varidbles are Variants.

Declare All Variables
In order to prevent errors, al variables will be declared before being used.

Scope and Usage Prefixesfor VBScript

Even though script is written directly into the HTML code of a Web page, questions
of vishility and lifetime are till important. Variables and constants declared within a
procedure are loca to that procedure and have alifetime that lasts only so long as
the script within the procedure is executing.

Variables and constants declared in script outside a procedure are visible to any
script contained in the current HTML page. These variables have the equivaent of
the module-level scope described earlier. Variables and congtants declared in
VBScript by using the Public keyword are vigble to dl script in the current HTML
page and to al script in dl other currently |oaded pages. For example, if you had an
HTML page that contained multiple frames designated by a <FRAMESET> teg
pair, avariable or congtant declared with the Public keyword would be visbleto dl
pages loaded within dl the frames specified by the <KFRAMESET> tag. To clarify
the scope of agiven variable, dl variables will be declared with a scope prefix,
where appropriate:;

Prefix Description

a_ Created in the Global .asa.

Programming Standards.doc 32 January 4, 2002

Visual Basic 6.0

Development Standards and Guidelines

m Locd to the ASP page or in an Includefile.

(no prefix) Non-gatic varigble, prefix local to procedure

14.2. Coding

14.3.

14.2.1.

14.2.2.

14.2.3.

Microsoft Standar ds Adopted

Microsoft’s ASP Conventions, developed by the I1S Resource Kit Team, Posted
March 17, 1998, are adopted by, and considered part of these standards. These
conventions are available on the Microsoft Developer Network at
http://msdn.microsoft.com/workshop/server/asp/aspconv.asp. These conventions
were adapted from Appendix B, “ASP Standards’ of Internet Information Server
Resource Kit published by Microsoft Press, 1998.

Microsoft’s ASP Guiddlines, dated December 27, 1999, written by J.D. Méier,
which origindly appeared in the MSDN Online Voices “Servin' It Up” column are
aso incorporated as part of this document. The naming conventions outlined in
section 14.1 are derived from this document.

Tag and Attribute Formats

When writing HTML, establish a standard format for tags and attributes, such as
using al uppercase for tags and al lowercase for attributes. As an dternative,
adhere to the XHTML specification to ensure dl HTML documents are vaid.
Although there are file 9ze trade- offs to consider when creating Web pages, use
quoted attribute values and closing tags to ease maintainability.

Keep Blocks of Script Together

In ASP, use script ddimiters around blocks of script rather than around each line of
script or intersperang smal HTML fragments with server-side scripting. Using
script ddimiters around each line or interspersng HTML fragments with server-side
scripting increases the frequency of context switching on the server Sde; this
hampers performance and degrades code readability.

Commenting

Y ou add comments to an HTML page by wrapping them in comment tags. The HTML
eement for acomment isthe <!-- and --> tag pair. At aminimum, add comments to
document the HTML where necessary. Use an introductory (header) comment to document
each subroutine and function in the HTML page. In VBScript, comments are indicated by
an apostrophe (*) character.

Comments serve an additional purpose when they are used in script inan HTML file.
Browserswill ignore any unrecognized HTML tag. However, if the script tags are ignored,
the browser will attempt to render the script itsdf as plain text. Thisisrarely the behavior

Programming Standards.doc 33 January 4, 2002

Visual Basic 6.0 Development Standards and Guidelines

you want. The correct way to format script so that older browsers will ignore both the script
tags and the script itself isto wrap your script (but not the script tags) in the <!-- and -->
comment tags. If you are usng VBScript, you will need to use the agpostrophe character to
add comments to script that is nested within the <!I-- and --> comment tags. The following
example uses both forms of comment tegs:

<SCRI PT LANGUAGE=" VBSCRI PT” >

<I--
Option Explicit

Sub Updat eMessage()

‘ This procedure calls code in a scriptlet to get
values for the current day, nonth, and year, and then
uses the innerHTM. property of a <DIV> tag to

dynam cal |l y
* display those val ues on the page.

-->
</ SCRI PT>

Programming Standards.doc 34 January 4, 2002

