
Copyright © 2000 by FemmeTech Inc. All rights reserved.

Visual Basic™ 32-bit Application Development
Standards and Guidelines

 Author: Erica Wieland
 FemmeTech Inc.
 P.O. Box 307
 Smithfield, VA 23431-0307
 EHWieland@FemmeTech.com

 Revised: 1/4/2002

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc January 4, 2002 ii

Portions of these guidelines are provided under IHS Professional Services.
Copyright © 1993-1999 by IHS Professional Services. All rights reserved.

Windows® and Visual Basic® are registered trademarks of Microsoft Corporation.

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc January 4, 2002 iii

Table of Contents

1. INTRODUCTION.. 1

2. ACKNOWLEDGEMENTS.. 1

3. REFERENCES .. 2

4. DOCUMENT STRUCTURE.. ERROR! BOOKMARK NOT DEFINED.

4.1. First Outline Level..Error! Bookmark not defined.
4.1.1. Sections 1-3 .. Error! Bookmark not defined.
4.1.2. Section 4.. Error! Bookmark not defined.
4.1.3. Section 5.. Error! Bookmark not defined.
4.1.4. Sections 6 through 14 ... Error! Bookmark not defined.

4.2. Second Outline Level..Error! Bookmark not defined.
4.2.1. Sections 5 through 14 ... Error! Bookmark not defined.

5. GENERAL CONVENTIONS .. 2

5.1. Naming .. 2
5.1.1. Purpose ... 2
5.1.2. Visual Basic Intrinsic Naming Rules ... 2
5.1.3. General Naming Guidelines .. 2

5.2. Coding ... 3
5.2.1. General Coding Considerations... 3
5.2.2. Required Visual Basic Environment Options .. 3
5.2.3. Path Names ... 4
5.2.4. Global Modules.. 4
5.2.5. Modification of Existing Source Code.. 5

5.3. Commenting.. 5
5.3.1. Purpose ... 5
5.3.2. General Commenting Guidelines.. 5

6. FORMS, MODULES & CLASSES.. 7

6.1. Naming .. 7

6.2. Coding ... 7
6.2.1. Use of Option Explicit ... 7
6.2.2. Indentation ... 7
6.2.3. White Space ... 7
6.2.4. Multiple Statements .. 8
6.2.5. Use of the Line Continuation Character (_)... 8
6.2.6. Use of Case Statements .. 8
6.2.7. Use of “Magic Numbers” or “Magic Literals ”.. 8
6.2.8. Use of “&” and “+” for Concatenation.. 8
6.2.9. Use of An Object’s Default Property ... 8
6.2.10. Use of GoTo ... 8
6.2.11. Use of IIf ... 8
6.2.12. Single Exit Point ... 9
6.2.13. Class Initialization.. 9
6.2.14. Error Handling.. 9

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc January 4, 2002 iv

6.3. Commenting.. 10
6.3.1. Module, form and class headers ... 10
6.3.2. Code Maintenance Comments... 11

7. PROCEDURES AND FUNCTIONS ... 12

7.1. Naming .. 12
7.1.1. General... 12
7.1.2. Functions.. 12
7.1.3. Property Procedures and Methods... 12
7.1.4. Files and Folders.. 12

7.2. Coding ... 13
7.2.1. Keep It Short .. 13

7.3. Commenting.. 13
7.3.1. Procedure Headers .. 13
7.3.2. In-Line Comments.. 14

8. CONTROLS & MENUS .. 14

8.1. Naming .. 14
8.1.1. Controls ... 14
8.1.2. Custom and Derived Controls ... 16
8.1.3. Menus ... 18

8.2. Coding ... 18
8.2.1. Use of Control Arrays... 18

9. VARIABLES.. 19

9.1. Naming .. 19
9.1.1. General... 19
9.1.2. Scope and Usage Indicators .. 19
9.1.3. Data Type Indicators .. 19
9.1.4. Objects .. 20
9.1.5. Special Context Tags... 23
9.1.6. Use Descriptive Variable Names ... 23
9.1.7. Boolean Variables .. 23
9.1.8. Loop-Index Variables .. 23

9.2. Coding ... 24
9.2.1. Declare All Variables ... 24
9.2.2. Place Each Variable Declaration on a Separate Line... 24
9.2.3. Declare Variables as a Specific Data Type... 24
9.2.4. Use Explicit Scope in Variable Declaration .. 24
9.2.5. Use Variables for One and Only One Purpose.. 24

9.3. Commenting.. 24

10. ENUMERATIONS .. 25

10.1. Naming .. 25

11. USER DEFINED TYPES (STRUCTURES) ... 25

11.1. Naming .. 25

12. CONSTANTS ... 25

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc January 4, 2002 v

12.1. Naming .. 25

12.2. Coding ... 26

13. MESSAGE BOXES... 26

13.1. Coding ... 26
13.1.1. Information Message Box.. 27
13.1.2. Warning Message Box... 27
13.1.3. Critical Message Box... 27

14. DATABASES AND STORED PROCEDURES .. 28

14.1. Naming .. 28
14.1.1. Tables .. 28
14.1.2. Fields ... 28
14.1.3. SQL Server Stored Procedures .. 29

14.2. Coding ... 29
14.2.1. Tables and Fields... 29

14.3. Commenting.. 31
14.3.1. Tables and Fields... 31
14.3.2. Stored Procedures ... 31

15. ACTIVE SERVER PAGES... 31

15.1. Naming .. 31
15.1.1. General... 31
15.1.2. Use Visual Basic Naming Standards... 32
15.1.3. Declare All Variables ... 32
15.1.4. Scope and Usage Prefixes for VBScript.. 32

15.2. Coding ... 32
15.2.1. Microsoft Standards Adopted .. 32
15.2.2. Tag and Attribute Formats... 33
15.2.3. Keep Blocks of Script Together.. 33

15.3. Commenting.. 33

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 1 January 4, 2002

Visual Basic 32-bit Application Development
Standards and Guidelines

1. INTRODUCTION
In my search for guidance on programming standards, I found many “parts” of standards. Naming
conventions, best programming practices, commenting guidelines. But I did not find a single,
comprehensive source of Visual Basic standards and guidelines that would help me in my day-to-
day work. This document is an attempt to pull together the myriad sources of information that I
found into a single document that covers every area I found a need for (and a few I wasn’t sure I
needed). In some cases, the listed standards were lifted almost verbatim from various reference
documents (see Acknowledgements). In other cases, bits and pieces from different sources were
put together to form a single, comprehensive standard. When sources were in conflict, I chose the
one that made the most sense to me. As such, this document is and will remain a “living” document,
subject to revisions, additions, and deletions, as I learn more and receive feedback. Because of the
disparate sources used in the development of these guidelines, some contradictions may exist.
Feedback on any contradictions would be appreciated, so that they can be resolved.

These coding standards and guidelines are intended to provide a framework for development of 32-
bit applications for the various Microsoft Windows operating systems using Microsoft’s Visual
Basic. Specific applications may require additions to these guidelines for application unique
requirements. These additions should be documented and maintained during the life cycle of the
application.

A comprehensive coding standard encompasses all aspects of code construction and, while
developers should exercise prudence in its implementation, it should be closely followed. Completed
source code should reflect a harmonized style, as if a single developer wrote the code in one
session.

2. ACKNOWLEDGEMENTS
This document owes much to the Application Development Standards and Guidelines developed by
IHS Professional Services, and kindly provided on their developer’s FTP site at
ftp.mindspring.com/users/paquette. Other sources of inspiration and guidance are the Sample
Development Standards provided by Deborah Kurata of InStep Technologies, Inc. on her website
at http://www.insteptech.com/, and Steve McConnell’s wonderful book, Code Complete, which
first convinced me that I needed development standards. Various articles, whitepapers and other
documentation available through the Microsoft Developer Network
http://www.msdn.microsoft.com were also heavily used in the preparation of these coding
standards.

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 2 January 4, 2002

3. REFERENCES
All developers are encouraged to read Code Complete, A Practical Handbook of Software
Construction by Steve McConnell. The sections on commenting code and code reviews are
particularly important.

The Visual Basic Programmer’s Guide to the Win32 API, by Daniel Appleman, is an excellent
resource. Developers should consider this book as part of their Visual Basic documentation.

4. GENERAL CONVENTIONS

4.1. Naming

4.1.1. Purpose

The intent of these naming conventions is to permit any developer to understand the
important characteristics of any given object without having to search through code
to ascertain that information. Each class of objects uses specific conventions to
provide this information.

4.1.2. Visual Basic Intrinsic Naming Rules

4.1.2.1. Names must begin with a letter

4.1.2.2. Names must contain only letters and/or numbers

4.1.2.3. Names may contain the underscore (_) character but not spaces or
other punctuation marks

4.1.2.4. Names can be as long as 40 characters

4.1.2.5. Visual Basic reserved words may not be used as names.

4.1.3. General Naming Guidelines

4.1.3.1. Each name will use a predefined prefix to identify the object or variable
type. These prefixes are defined in the sections that follow.

4.1.3.2. The first character following the prefix in a name will be an upper case
letter.

4.1.3.3. The use of upper and lower case letters, numbers, and underscores in
names are encouraged to improve readability.

4.1.3.4. While names may be up to 40 characters in length, developers are
encouraged to use the minimum length possible without sacrificing

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 3 January 4, 2002

readability. Name lengths in the range of 9 to 15 characters are
considered optimal.

4.1.3.5. Names should be chosen that are clear and unambiguous.

4.1.3.6. Names should reflect the real world nature of the object rather than use
computer or data processing terms.

4.1.3.7. Avoid homonyms to prevent confusion during code reviews, such as
write and right.

4.1.3.8. Minimize the use of abbreviations. If abbreviations are used, be
consistent in their use. An abbreviation should have only one meaning
and likewise, each abbreviated word should have only one
abbreviation. For example, if using min to abbreviate minimum, do so
everywhere and do not later use it to abbreviate minute.

4.1.3.9. Avoid reusing names for different elements, such as a routine called
ProcessSales() and a variable called iProcessSales.

4.1.3.10. When naming elements, avoid using commonly misspelled words. Also,
be aware of differences that exist between American and British
English, such as color/colour and check/cheque.

4.2. Coding

4.2.1. General Coding Considerations

4.2.1.1. Always code for clarity, not efficiency.

4.2.1.2. Choose variable and function names carefully.

4.2.1.3. Write your code for the reader.

4.2.1.4. Size and speed of code, while important, are secondary to readability
and, more importantly, maintainability

4.2.2. Required Visual Basic Environment Options

The following options should always be set in the IDE. All other IDE environment
options may be set at the developer’s discretion:

• Auto Syntax Check Checked

• Require Variable Declaration Checked

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 4 January 4, 2002

• Auto Indent Checked

• Tab Width 4

Save Files as ASCII Text. Save form (.FRM) and module (.BAS) files as ASCII
text to facilitate the use of version control systems and minimize the damage that can
be caused by disk corruption. To have Visual Basic always save files as ASCII
text, from the Environment Options dialog, set the Default Save As Format option
to Text. In addition, this allows you to:

• use your own editor

• use automated tools, such as grep

• create code generation or CASE tools for Visual Basic

• perform external analysis of your Visual Basic code

4.2.3. Path Names

Path names will not be hard-coded into any application, unless required by the
customer. Provisions must be made that permit the application to ascertain or
permit the user to select any required file path information. All path names should
use the Universal Naming Convention (UNC) (\\server\share\directory) for shared
drives. Mapped drive letters should be avoided unless provided as input from the
user. User documents and user output files should be placed in the My Documents
directory by default. Placing user output files in a subdirectory under My
Documents is acceptable.

4.2.4. Global Modules

While the majority of modules in an application will be class modules, there will be
certain standard modules, described below, for each application. The number of
global modules will be based on the needs of the application, but should be
minimized in favor of class modules.

<EXENAME>.BAS

This module, named as the application EXE, will contain an overview description of
the application, enumerating primary data objects, routines, algorithms, dialogs,
database and file system dependencies, and so on. It will also contain all
documentation for special naming conventions including application specific
contexts. In addition, it will contain any application specific public constants.

BEGINEND.BAS

This module will contain the Sub Main() and Sub ExitApp() procedures along
with related startup and shutdown procedures. All applications will have their
startup in Sub Main(). All applications will have a single exit point in Sub

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 5 January 4, 2002

ExitApp() containing all necessary housekeeping code required for a normal
application shutdown. All application exit points must call this procedure.

4.2.5. Modification of Existing Source Code

When modifying an existing application, all new code should follow these coding
standards. Existing code should be changed to be in accordance with these
standards during modification if the time required to do the modifications is not
excessive, and if the modifications do not have a high likelihood of introducing bugs
into the application.

4.3. Commenting

4.3.1. Purpose

Code, when well written, should be self-documenting; however, self-documented
code cannot possibly describe the developer’s intent or explain an algorithm or
section of logic! Therefore, comments are required to ensure that the code can be
maintained by communicating this type of information. Comments must
communicate information and not what code is coming next. Developers should
document their code liberally with in-line comments. Comments should allow a
different developer to understand the purpose and function of the code including its
relationship to other code modules.

Make it a practice to write comments at the same time that (or earlier than) you
write your code. Some developers write the comments for all of their procedures
before they write a single line of code. It can be very effective to design procedures
using only comments to describe what the code will do. This is a way to sketch out
a framework for a procedure, or several related procedures, without getting bogged
down in the details of writing the code itself. Later, when you write the code to
implement the framework, your original high-level descriptions can be effective
comments. Whatever technique you use, always enter or revise your comments as
soon as you write the code. Never “save it for later,” because there will often never
be time to do it later, or if there is, you will not understand the code as well when
you come back to it at some other time.

Refer to the section on commenting in Code Complete, A Practical Handbook of
Software Construction by Steve McConnell. This section gives practical guidance
on how to comment code.

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 6 January 4, 2002

4.3.2. General Commenting Guidelines

4.3.2.1. Comment as you code, because most likely there won’t be time to do it
later. Also, should you get a chance to revisit code you’ve written, that
which is obvious today probably won’t be obvious six weeks from
now.

4.3.2.2. When modifying code, always keep the commenting around it up to
date.

4.3.2.3. Avoid using clutter comments, such as an entire line of asterisks.
Instead, use white space to separate comments from code.

4.3.2.4. Avoid surrounding a block comment with a typographical frame. It may
look attractive, but it is difficult to maintain.

4.3.2.5. Prior to deployment, remove all temporary or extraneous comments to
avoid confusion during future maintenance work.

4.3.2.6. If you need comments to explain a complex section of code, examine
the code to determine if you should rewrite it. If possible, do not
document bad code—rewrite it. Although performance should not
typically be sacrificed to make the code simpler for human
consumption, a balance must be maintained between performance and
maintainability.

4.3.2.7. Use complete sentences when writing comments. Comments should
clarify the code, not add ambiguity.

4.3.2.8. Avoid the use of superfluous or inappropriate comments, such as
humorous sidebar remarks.

4.3.2.9. Use comments to explain the intent of the code. They should not serve
as inline translations of the code.

4.3.2.10. Comment anything that is not readily obvious in the code.

4.3.2.11. To prevent recurring problems, always use comments on bug fixes and
work-around code, especially in a team environment.

4.3.2.12. Use comments on code that consists of loops and logic branches. These
are key areas that will assist the reader when reading source code.

4.3.2.13. Throughout the application, construct comments using a uniform style,
with consistent punctuation and structure.

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 7 January 4, 2002

4.3.2.14. Despite the availability of external documentation, source code listings
should be able to stand on their own because hard-copy documentation
can be misplaced.

5. FORMS, MODULES & CLASSES

5.1. Naming

Class, module, user control, and user document names (the Name property, not the file
name) will use a single upper case letter prefix. Forms will use the lower-case three-letter
abbreviation frm, unless they are being used as a formal class, in which case they will use the
upper-case letter F.

Object Type Prefix
Form frm
Form (as Class) F
Class C
Interface I
M Standard Module

Examples:

CStringUtil String class categorized as “Util”
CError Error class
IExplorer Explorer interface class

5.2. Coding

5.2.1. Use of Option Explicit

Option Explicit must be used in every form and module. It must be the first code line
following the form/module header, before the declarations sections. Use of Option
Explicit will require the developer to explicitly declare all variables thereby
eliminating errors introduced by using misspelled variables.

5.2.2. Indentation

Code in all procedures will be indented one (1) tab stop. Code inside programming
constructs such as If...EndIf, Select Case...End Select, For...Next,
and Do...Loop will be indented one (1) additional tab stop. Nested constructs will
be indented an additional tab stop for each level of nesting.

5.2.3. White Space

Use white space and individual or double blank lines to indicate logical program
sections. Blank lines should separate programming constructs such as If...EndIf
and For...Next from surrounding code. Blank lines should also be used to

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 8 January 4, 2002

improve readability of the code such as in large Select Case...End Select
constructs.

5.2.4. Multiple Statements

Multiple statements should not appear on a single line. Even a simple If, Then should
be put on three lines for clarity.

5.2.5. Use of the Line Continuation Character (_)

The line continuation character should be used to break long statements into multiple
lines. In general, a single line should be no longer than what will appear in the code
window in the IDE.

5.2.6. Use of Case Statements

All Case statements must include a Case Else to ensure that there is a default case.
The Case Else may display an error message or log an error, if appropriate.

5.2.7. Use of “Magic Numbers” or “Magic Literals”

Magic numbers (i.e., hard-coded numbers in code) and magic literals (i.e., hard-
coded strings) should be avoided. Named constants and enumerations, where
appropriate, should be used instead. Hard-coded 1s or 0s may be used to
increment, decrement, and start loops, although a descriptive variable is preferable.

5.2.8. Use of “&” and “+” for Concatenation

Use the concatenation operator (“&”) rather than the plus sign (“+”) when
concatenating strings. Use the plus sign (“+”) when working with numeric values.

5.2.9. Use of An Object’s Default Property

When referring to an object without referencing a property, the default property of
the object is being invoked. Using an object’s default property makes the code less
maintainable. Therefore, developers are to always use an object’s specific property
rather than its default property.

5.2.10. Use of GoTo

The use of GoTo can make code more difficult to follow and more difficult to
maintain. Therefore, GoTo should only be used as part of the On Error statement
and to enforce a single exit point for each procedure.

5.2.11. Use of IIf

In general, the IIf (immediate if) function should not be used. If it is to be used, it
should be thoroughly tested to ensure that the tests are being evaluated as
anticipated.

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 9 January 4, 2002

5.2.12. Single Exit Point

All procedures, regardless of their type will have one and only one exit point. This
is one of the very few times that GoTo should be used. If a procedure has multiple
conditions for an exit, each condition should end with a GoTo statement. The GoTo
label for this case should be ‘CleanExit’. The exit label should be positioned
just before the section of housekeeping code prior to the exit.

5.2.13. Class Initialization

The Visual Basic form and class modules have a Class object having two events,
Initialize and Terminate. These events are fired only once each at the instantiation
and termination of the object represented by the class. Unfortunately, the Initialize
event does not have any parameters, therefore, it can not be used to initialize the
object using passed-in data that is available only at run time. To get around this
limitation, any class having the requirement to be initialized using data not available
to the object will have a method named InitializeObject. This method may have any
parameters necessary to complete initialization of the object. It is to be invoked
immediately following the creation of the object.

5.2.14. Error Handling

Procedures will use an error trap for expected and unexpected run time errors.
Developers may exercise their judgment and decide that a general or event
procedure is simple enough that error handling is not necessary; however, all
procedures in ActiveX components must use error traps. Handling of those errors
is left to the developer’s judgement.

Our general error handling philosophy will be to handle errors at the lowest level
possible without user intervention. Failing that, all errors will be passed up to the
user interface and displayed for the user. As each routine is written, some time
should be spent finding the most common errors and writing code to handle them
properly in that routine.

Every effort will be made to handle errors within a procedure. When this is not
possible, error conditions will be raised back up to the calling procedure using
appropriate implementations of the Err.Raise method available in a standard
ActiveX component. Refer to the Programmer’s Guide in the VB documentation
for a discussion on error handling with ActiveX objects.

GoTo should be used as a clause in the On Error statement. When used, the On
Error statement should be the first line of code following the variable declarations
in a procedure. The GoTo label should be ‘ErrorHandler’.

When an error condition is detected within the code (not from a runtime error), a
different GoTo label made up of the procedure name with ‘Err’ appended to the

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 10 January 4, 2002

end may be used if the error handling requirements are different between detected
error conditions and runtime errors.

The error numbers should be the VB errors when appropriate. For errors that are
not VB errors, such as validation or business rule violations, an error number should
be defined. The error number must be generated greater than vbObjectError + 512.
The errors that can be generated by a class should be exposed to the other parts of
the application using an ENUM statement.

5.3. Commenting

5.3.1. Module, form and class headers

Will be placed as the first entry in the declarations section of the file. Option
Explicit must immediately follow the header. The declaration sections follow the
Option Explicit statement. Declarations will be in the order shown in the
sample file header. All public declarations should precede file level declarations in
each section where such distinctions can be made.

‘Created: 03/15/99
‘Author: Joe Programmer
‘Description: Description of file; Include sufficient
‘ info to clearly describe the component
‘Dependencies: List any other dependent components
‘Issues: List known issues, problems, etc.
‘
Option Explicit

‘===
‘Code Maintenance Log
‘===

‘===
‘Implements Declaration Section
‘===

‘===
‘Type Definition Declaration Section
‘===

‘===
‘Enumeration Declaration Section
‘===

‘===
‘API/DLL Procedure Declaration Section
‘===

‘===
‘Constant Declaration Section

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 11 January 4, 2002

‘===

‘===
‘Variable Declaration Section
‘===

5.3.2. Code Maintenance Comments

Code maintenance comments will not be used until the ‘code complete’ milestone.
After that point, the following commenting will be used.

A code maintenance section will be appended to the file header under the Code
Maintenance Log section to identify and summarize the changes made to the file.
Use the following format:

Place this comment block under the Code Maintenance Log section in the file
header for each maintenance action. Use AFTER the “code complete” milestone.
‘
‘Developer: Joe Programmer
‘Change Date: 06/05/99
‘Reference: Put in, as appropriate, any problem
‘ report or bug references. If the
‘ change is an enhancement, indicate it
‘ as such.
‘Description: Put in a brief description of the
‘ change(s) made.
‘

If the version control tools being used provide the capability to automatically add
this information, use the tool’s format rather than the one above.

In the procedure where the changes are made, the developer must add an entry to
the history section of the procedure header to include the developer’s name, the
date of the change, and a brief comment describing the changes including any bug
numbers. Refer to the example below:
‘--
‘Date Developer Comments
‘03/15/99 J. Programmer Initial creation
‘05/24/99 J. Programmer Bug 1234; Changed column names
‘ to new naming standards
‘

At the actual location in the code where the changes are made, the developer is to
add a comment block showing “**”, their initials, the date, and the bug number or
other reference in the first comment line. Use subsequent comment lines to describe
the actual changes. . Refer to the example below:
‘JP 05/24/99 – Bug 1234
‘Change the query columns in the SQL statement
‘to correspond to the new naming standards.

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 12 January 4, 2002

6. PROCEDURES AND FUNCTIONS

6.1. Naming

6.1.1. General

Public and private subroutines, functions, and methods will generally follow a
<verb><object> syntax, such as OpenFile or WriteReport, using mixed case.

6.1.2. Functions

6.1.2.1. Public and private function procedures will use the <verb><object>
naming convention.

6.1.2.2. Functions will include a three-letter lower case prefix to indicate the
data type that the function returns. The function data type prefix will use
the same letters as the variable data type prefix or context tag. Public
Function procedures used as class methods will NOT use the datatype
prefixes.

6.1.2.3. When naming functions, include a description of the value being
returned, such as GetCurrentWindowName().

6.1.3. Property Procedures and Methods

Class property procedures and public Sub and Function procedures used as class
methods will NOT use the datatype prefixes. In addition, parameters of public
property or public method procedures will NOT use the datatype prefix. In some
cases, a single <verb> is an acceptable public Sub or Function procedure name,
such as Move or Add. Names will follow standard Windows conventions for
properties and methods. All method names will follow the <verb><object> naming
convention.

NOTE: All event procedures are generated by Visual Basic for forms and controls.
These event procedures are private to the form containing them and are
automatically named based on the form or control name and the event. The above
naming conventions do not apply to event procedures. However, the above
conventions do apply to events that are created as part of classes by a developer.

6.1.4. Files and Folders

File and folder names, like procedure names, should accurately describe what
purpose they serve.

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 13 January 4, 2002

6.2. Coding

6.2.1. Keep It Short

In general, routines should not be longer than one screen page. Routines longer than
one screen should be broken down into subroutines.

6.3. Commenting

6.3.1. Procedure Headers

All procedures and functions will have a standard header comment section
immediately following the Sub, Function, or Property statement. A variable
declaration section will immediately follow the procedure header. Constants will
come first in the declarations section followed by variables.

Use for all property, method, general function, and general sub procedures.
‘Purpose: What the routine does (not how)
‘Inputs: Each non-obvious parameter on a separate line
‘ with in-line comments
‘Assumes: List of each non-obvious external variable,
‘ control, open file, and so on.
‘Returns: Explanation of value returned for functions.
‘Effects: List of each affected external variable, control
‘ file, and so on, and the affect it has (only
‘ if this is not obvious
‘
‘Date Developer Comments
‘03/15/99 J. Programmer Initial creation
‘
‘
‘Local Constant/Variable Declaration Section
‘

The header for general procedures will contain a clear description of the procedure
and a description of each parameter and any return values. A maintenance line will
also be included containing the date of the change activity, the developer’s name,
and a brief description of the change activity. During development, only a line for
procedure creation will be used. When the application enters the maintenance
phase (after “code complete”), the maintenance lines will be included. These
headers will be placed in all user defined general procedures.

The header for event procedures will only contain maintenance lines containing the
date of the change activity, the developer’s name, and a brief description of the
change activity. These headers will be placed in all event procedures that contain
code. During development, only a line for procedure creation will be used. When
the application enters the maintenance phase (after “code complete”), the
maintenance lines will be included. They are NOT to be placed in event procedures
that DO NOT contain code.

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 14 January 4, 2002

6.3.2. In-Line Comments

Comment as you code. Make it a policy to change the comments when the purpose
of the code changes. In-line comments for describing particular lines of code, or a
group of code lines such as loops, will consist of the comment block with no special
comment line before or after it. A blank comment line should precede the comment
block, and there should be no blank lines between the comment block and the code
to which it refers. It will be constructed as follows:
‘
‘Comment goes here. Use as many lines as necessary,

‘being sure to start a new line so the comment is

‘visible in a typically sized code window

7. CONTROLS & MENUS

7.1. Naming

7.1.1. Controls

The default control names provided automatically by the development environment
WILL NOT be used as the control name. Instead, create a name using a prefix to
identify the type of control with a name that adequately describes the function or
purpose of the control. The prefix for standard Visual Basic controls will consist of
three (3) lower case letters followed by the field name.

The following table contains prefixes for the Visual Basic controls.

Prefix Control Example
ani Animated Button aniPhoneConnect
bed Pen BEdit bedName
cbo Combo Box cboTypeCode
chk Check Box chkReadOnly
clp Picture Clip clpToolBar
cmd Command Button (3D) cmdOK (cmd3dOK)
com Communications comCommPort1
ctl Control (when type unk) ctlUpdate
dat Data Control datClient
dbc DBCombo (data-bound) dbcState
dbg DBGrid (data-bound) dbgRegister
dbl DBList (data-bound) dblTitle
dir Directory List Box dirSource
dlg Common Dialog dlgBrowse

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 15 January 4, 2002

Prefix Control Example
drv Drive List Box drvTarget
fil File List Box filSource
fra Frame (3D) fraUserOptions

(fra3dUserOptions)
gau Gauge gauProgress
gpb Group Push Button gpbChannel
gra Graph graSalesYTD
grd Grid grdToDo
hed Pen HEdit hedSignature
hsb Horizontal Scroll Bar hsbVolume
ili ImageList Item iliToolBarButton
ils ImageList ilsToolBarImages
img Image imgIcon
ink Pen Ink inkMap
key Key State keyCapsLock
lbl Label lblLastName
lin Line linDivider
lst List Box lstStates
lvi List View Item lviUserName
lvw List View lvwNames
mci Multimedia MCI mciMMControl
mnu Menu Option mnuFileExit
mpm MAPI Message mpmMAPIMessage
mps MAPI Session mpsMAPISession
msk Masked Edit mskWorkPhone
ole OLE Client oleWordDoc
opt Option Button (3D) optPrefix (opt3dPrefix)
out Outline outGroupMembers
pic Picture Box picToolBar
pnl 3D Panel pnlStatusBar
prg ProgressBar prgPrinting
rpt Crystal Reports Control rptMailingLabels
rtf RichTextBox rtfNotes
shp Shape shpSquare
sld Slider sldVolume
spn Spin Button spnCopies
sta StatusBar staMessage
tab Tab tabSettings
tbs TabStrip tbsOptions
tlb ToolBar tlbMain

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 16 January 4, 2002

Prefix Control Example
tmr Timer tmrTrigger
tvn TreeView Node object tvnPart
tvw TreeView tvwPartList
txt Text Box txtLastName
upd UpDown updVolume
vsb Vertical Scroll Bar vsbMouseSensitivity

7.1.2. Custom and Derived Controls

For new controls not listed above, try to come up with a unique three character
prefix. However, it is more important to be clear than to stick to three characters.

For derivative controls, such as an enhanced list box, extend the prefixes above so
that there is no confusion over which control is really being used. A lower-case
abbreviation for the manufacturer would also typically be added to the prefix. For
example, a control instance created from the Visual Basic Professional 3D frame
could uses a prefix of fra3d to avoid confusion over which control is really being
used. A command button from MicroHelp could use cmdm to differentiate it from
the standard command button (cmd).

The prefix for third party custom controls will consist of three (3) lower case letters
followed by an additional lower case letter or number (chosen as a unique identifier
for the set of custom controls) followed by the field name. If the custom control is a
replacement for a standard control, the first three letters in the prefix should be the
same as the standard control. If the custom control is a unique control, a three-
letter prefix must be chosen and used consistently throughout the application.

All new control prefixes should be documented as part of the project
documentation on which they are used, including listing them in the
<EXENAME>.BAS file. Using the following format:
Prefix Control Type Vendor
cmdm Command Button MicroHelp

The following table lists standard third-party control prefixes:

Control Type Control name Prefix Vendor Example VBX Filename
Alarm Alarm almm MicroHelp almmAlarm MHTI200.VBX
Animate Animate anim MicroHelp animAnimate MHTI200.VBX
Callback Callback calm MicroHelp calmCallback MHAD200.VBX
Combo Box DB_Combo cbop Pioneer cbopComboBox QEVBDBF.VBX
Combo Box SSCombo cbos Sheridan cbosComboBox SS3D2.VBX
Check Box DB_Check chkp Pioneer chkpCheckBox QEVBDBF.VBX

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 17 January 4, 2002

Chart Chart chtm MicroHelp chtmChart MHGR200.VBX
Clock Clock clkm MicroHelp clkmClock MHTI200.VBX
Button Command

Button
cmdm MicroHelp cmdmCommandButton MHEN200.VBX

Button DB_Command cmdp Pioneer cmdpCommandButton QEVBDBF.VBX
Button (Group) Command

Button(multiple)
cmgm MicroHelp cmgmBtton MHGR200.VBX

Button Command
Button(icon)

cmim MicroHelp cmimCommandButton MHEN200.VBX

CardDeck CardDeck crdm MicroHelp crdmCard MHGR200.VBX
Dice Dice dicm MicroHelp dicmDice MHGR200.VBX
List Box (Dir) SSDir dirs Sheridan dirsDirList SS3D2.VBX
List Box (Drv) SSDrive drvs Sheridan drvsDriveList SS3D2.VBX
List Box (File) File List film MicroHelp filmFileList MHEN200.VBX
List Box (File) SSFile fils Sheridan filsFileList SS3D2.VBX
Flip Flip flpm MicroHelp flpmButton MHEN200.VBX
Scroll Bar Form Scroll fsrm MicroHelp fsrmFormScroll ???
Gauge Gauge gagm MicroHelp gagmGauge MHGR200.VBX
Graph Graph gpho Other gphoGraph XYGRAPH.VBX
Grid Q_Grid grdp Pioneer grdpGrid QEVBDBF.VBX
Scroll Bar Horizontal

Scroll Bar
hsbm MicroHelp hsbmScroll MHEN200.VBX

Scroll Bar DB_HScroll hsbp Pioneer hsbpScroll QEVBDBF.VBX
Graph Histo hstm MicroHelp hstmHistograph MHGR200.VBX
Invisible Invisible invm MicroHelp invmInvisible MHGR200.VBX
List Box Icon Tag itgm MicroHelp itgmListBox MHAD200.VBX
Key State Key State kstm MicroHelp kstmKeyState MHTI200.VBX
Label Label (3d) lblm MicroHelp lblmLabel MHEN200.VBX
Line Line linm MicroHelp linmLine MHGR200.VBX
List Box DB_List lstp Pioneer lstpListBox QEVBDBF.VBX
List Box SSList lsts Sheridan lstsListBox SS3D2.VBX
MDI Child MDI Control mdcm MicroHelp mdcmMDIChild
Menu SSMenu mnus Sheridan mnusMenu SS3D3.VBX
Marque Marque mrqm MicroHelp mrqmMarque MHTI200.VB
Picture OddPic odpm MicroHelp odpmPicture MHGR200.VBX
Picture Picture picm MicroHelp picmPicture MHGR200.VBX
Picture DB_Picture picp Pioneer picpPicture QEVBDBF.VBX
Property Vwr Property

Viewer
pvrm MicroHelp pvrmPropertyViewer MHPR200.VBX

Option (Group) DB_RadioGrou
p

radp Pioneer radqRadioGroup QEVBDBF.VBX

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 18 January 4, 2002

Slider Slider sldm MicroHelp sldmSlider MHGR200.VBX
Button (Spin) Spinner spnm MicroHelp spnmSpinner MHEN200.VBX
Spreadsheet Spreadsheet sprm MicroHelp sprmSpreadsheet MHAD200.VBX
Picture Stretcher strm MicroHelp strmStretcher MHAD200.VBX
Screen Saver Screen Saver svrm MicroHelp svrmSaver MHTI200.VBX
Switcher Switcher swtm MicroHelp swtmSwitcher ???
List Box Tag tagm MicroHelp tagmListBox MHEN200.VBX
Timer Timer tmrm MicroHelp tmrmTimer MHTI200.VBX
ToolBar ToolBar tolm MicroHelp tolmToolBar MHAD200.VBX
List Box Tree trem MicroHelp tremTree MHEN200.VBX
Input Box Input (Text) txtm MicroHelp inpmText MHEN200.VBX
Input Box DB_Text txtp Pioneer txtpText QEVBDBF.VBX
Scroll Bar Vertical Scroll

Bar
vsbm MicroHelp vsbmScroll MHEN200.VBX

Scroll Bar DB_VScroll vsbp Pioneer vsbpScroll QEVBDBF.VBX

7.1.3. Menus

Due to their unique hierarchical nature, menus have additional naming requirements.
Captions on the menu bar must be one word to conform to Windows standards.
Captions of menu options and sub menu options should be no longer than two
words. Menus should normally have only one level of sub menu options under any
given menu option. Menu names consist of the prefix followed by the menu bar
caption and the menu option caption. For example, the Exit menu option under the
File menu would have a menu name of mnuFileExit. For menu options with two
word captions, remove the space between the two words. For example, the
Special Paste menu option under the Edit menu would have a menu name of
mnuEditSpecialPaste. To distinguish between menu options and sub menu options,
insert an underscore character between their names. For example, the Link sub
menu option under the Special Paste menu option would have a menu name of
mnuEditSpecialPaste_Link.

7.2. Coding

7.2.1. Use of Control Arrays

When feasible, use control arrays instead of separately named controls. An
enumeration should be defined to allow the individual controls to be referenced by
name, rather than index number. Unless you anticipate needing to reference labels
extensively, an enumeration is not required for label control arrays. Remember that
control arrays need not contain sequential index number, nor do the index numbers
need to start at 0. The benefits of this technique are:

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 19 January 4, 2002

• Speed. When VB creates the controls, it only has to create one of the controls
in the control array. This increased the limit on the number of controls you can
have on a form and improves performance.

• You get one event procedure for the control array instead of one for each
control. This prevents duplicate code.

• It is easier to work through a set of controls that are in an array. You can cycle
through them using For Each/Next to move them or set their properties.

8. VARIABLES

8.1. Naming

8.1.1. General

All variables, including arrays, will be given a three-part name, consisting of a
lower-case scope indicator (two characters), a lower-case data type indicator
(three characters) and a mixed-case variable-length descriptive name. Single letter
variable names (such as i, j, and k) will NOT be used.

8.1.2. Scope and Usage Indicators

The scope and usage indicator will consist of one (1) lower case letter prefix
followed by an underscore (_) to indicate the scope of the variable. Local
(procedure-level) variables will NOT use a scope indicator.

Scope Indicator Prefix

Public (global) g_

Class c_

Module (includes
form-level variables)

m_

Static variable st_

Local (none)

Parameter (arguments
in procedures and
functions)

p_

Parameters in public class property or method procedures will NOT use either the
scope or data type prefixes.

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 20 January 4, 2002

8.1.3. Data Type Indicators

The scope indicator will be followed by a three-letter prefix that indicates the data
type of the variable. The letters that make up the prefixes are:

Data Type Indicator Prefix

Boolean Bln

Byte Byt

Integer Int

Long Lng

Single Sgl

Double Dbl

Currency Cur

String (text) Str

Date(Time) Dte

Variant Var

Form (parameter passed “As Form”) Frm

Control (parameter passed “As
Control”; use the control prefix for
specific controls such as ‘txt’ for “As
Text”)

Ctl

Object Obj

Collection Col

User Control Axc

User Document Axd

Examples:

Form level integer variable m_intObjectCount
Module level single variable m_sglPercentComplete
Form level currency variable m_curInvoiceTotal
Class level long variable c_lngItemCounter
Local integer variable intCounter
Parameter Boolean variable p_blnShowItem
Parameter control p_ctlSourceControl
Parameter textbox p_txtSourceTextBox

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 21 January 4, 2002

8.1.4. Objects

When object variables are declared, using early binding is preferable. For user
objects, such as classes, identify and document the three-letter prefix that will be
used to identify that object type. Use the “obj” prefix only when declaring a generic,
or late-bound, object variable. Use this prefix even when you are creating a late-
bound object variable that represents an Office application. For example:
Dim objXLApp As Object
Dim objWDDocument As Object
Dim objOLMailItem As Object

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 22 January 4, 2002

Object variable prefixes:

ActiveX Data Objects (ADO)

Prefix Object Type Example
cnn Connection cnnMain
cmd Command cmdSalesBRegion
rst RecordSet rstCustomers
fld Field fldAddress
prm Parameter prmAge
pro Property Pro
err Error errErrors

Data Access Objects (DAO) and Microsoft Access:

Prefix Object Type Example
db ODBC Database dbAccounts
ds ODBC Dynaset

object
dsSalesByRegion

fdc Field collection fdcCustomer
fd Field object fdAddress
ix Index object ixAge
ixc Index collection ixcNewAge
qd QueryDef object qdSalesByRegion
qry
(suffix)

Query SalesByRegionQry

ss Snapshot object ssForecast
tb Table object tbCustomer
td TableDef object tdCustomers

Microsoft Office Automation Applications :

Prefix Object Type Example
ac Access acReport
xl Excel xlApp
fp FrontPage fpInstance
mso Office Mso
bind OfficeBinder Bind
ol Outlook olNameSpace
pp PowerPoint ppPresentation
wd Word wdNewDocument
vb VBA Vb

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 23 January 4, 2002

8.1.5. Special Context Tags

When a variable is used in a special context, the tag should reflect that context even
if it is one of the above variable types. Typical context tags are shown below.

Prefix Data Type Context Tags Example
h Integer Handle hCursor
hwnd Integer Window Handle hwndForm
hdc Integer Device Handle hdcPrinter
rc Integer Return Code rcStatus

Other context tags may be used but must be documented in the
<EXENAME>.BAS module.

It is permissible to use just the context tag without a name (i.e., ‘rc’ rather than
‘rcStatus’) when the use of the context tag is completely unambiguous. If there is
any chance for confusion, the full tag plus name convention will be used.

8.1.6. Use Descriptive Variable Names

Don’t use variables names that are totally unrelated to the variables they represent.
Variable names like Sally, Bob and BiteMe (or txtSally, intBob, and varBiteMe)
make your code difficult to read and maintain, no matter how clever or cute the
names are.

8.1.7. Boolean Variables

Boolean variables should be named to reflect the True condition, i.e. blnIsNew, and
should be descriptive of what is being tested. Boolean names should not be
negative, i.e. blnNotFound. The use of the word Is immediately following the bln
prefix is encouraged. This puts the variable name in the form of a positive statement
that is clearly True or False.

8.1.8. Loop-Index Variables

Loop-index variables should be given an appropriate, descriptive name wherever
possible. For instance, if the loop is going from 1 to the maximum number of
records, name the loop counter intMaxRecords. Be sure to choose a variable type
that is large enough to hold the largest number that loop should ever encounter;
when in doubt, use a long integer. Non-descriptive loop-index variable names (like
i, j, or k) will not be used.

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 24 January 4, 2002

8.2. Coding

8.2.1. Declare All Variables

The use of Option Explicit will require all variables to be declared by the compiler.
This option should never be removed, even during development. All variables must
be declared.

8.2.2. Place Each Variable Declaration on a Separate Line

Multiple variable declarations placed on a single line, e.g., Dim y, n, b as
String, declares y and n to be the data type Variant, and only b to be a String.
Placing each declaration on a single line avoids this problem. If y and n should be
variants, that should be made explicit by declaring them on separate lines as Variant
data types.

8.2.3. Declare Variables as a Specific Data Type

All form, class, and module level variables, including arrays, will be explicitly
declared as a specific data type in the declarations section of the appropriate form,
class, or module. Variables should normally be declared as one of the defined data
types rather than the variant data type. Unless a particular requirement dictates the
use of a variant data type, variant data type variables should be avoided.
Parameters (procedure arguments) should be explicitly declared as specific data
types in the parameter list of the procedure declaration. Be sure to use the ByVal
keyword as appropriate. In addition, provide the return data type for all Function
and Property Get procedures.

8.2.4. Use Explicit Scope in Variable Declaration

Variables should be declared with the Private keyword rather than the Dim
keyword. Public variables should never be used! If a variable needs to be accessed
from outside a class, module, or form, create a property let/get/set for the variable,
as required. For routines, you may also select Friend as the scope. This is useful
when creating ActiveX components. All variables local to a Sub procedure or
Function procedure must be declared explicitly in the beginning of the procedure
using the Dim or Static keywords as appropriate.

8.2.5. Use Variables for One and Only One Purpose

Variables should not be “reused” for different purposes. One variable should be
declared for each purpose. In particular, module-level variables should not be
declared in order to reuse them in place of local variables in routines.

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 25 January 4, 2002

8.3. Commenting

Variables should be given names that describe what they are being used for. If a variable is
unclear, an in-line comment should be included along with the variable declaration
describing the purpose of the variable.

9. ENUMERATIONS

9.1. Naming

Enumerations will be declared with the enumeration type in all capital letters and a lower
case “e” prefix to distinguish enumerations from user-defined types. The enumeration
components follow normal variable conventions except that the enumeration prefix will be
used in place of the scope and datatype prefix. The enumeration prefix will be a 2-5 letter
prefix for identifying the enumeration, and it will be placed in an in-line comment on the
‘Enum’ line. The enumeration’s prefix also will be used for the data type portion of a
variable prefix, as shown below.

 Example:
 Public Enum eRETURNCODE ‘rc
 rcSuccessWithInfo = 1
 rcSuccess = 0
 rcFailure = -1
 rcNoDataFound = -7
 rcNoMoreData = -8
 End Enum

 Public rcReturn As eRETURNCODE

10. USER DEFINED TYPES (STRUCTURES)

10.1. Naming

User defined types will be declared with the data type in all capital letters with their
components following normal variable conventions except that no scope prefix will be used.
A 2-5 letter prefix for identifying the user-defined type will be placed in an in-line comment
on the “Type” line. It will be used for the data type portion of the variable prefix.

 Example:
 Type EMPLOYEE ‘emp
 strName As String
 strAddress As String
 strCityStateZip As String
 dteHireDate As Date
 curSalary As Currency
 End Type

 Private m_empEmployee As EMPLOYEE

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 26 January 4, 2002

11. CONSTANTS

11.1. Naming

All non-variable data used in the application must be defined as named constants. Intrinsic
VB and VBA constants will be used wherever applicable. These constants can be found in
the VB help file. Of particular interest are constants for special characters:

vbCrLf [Chr$(13) + Chr$(10)]
vbCr [Chr$(13)]
vbLf [Chr$(10)]
vbBack [Chr$(8)]
vbTab [Chr$(9)]
vbNullChar [Chr$(0)]

Use these intrinsic constants rather than the equivalent Chr$ functions. Other predefined
constants, such as API and type constants, should be used whenever possible.

Application specific constants will be named as appropriate using all uppercase letters,
numbers, and an underscore (_) between words. If a group of constants is related, they
should have a common prefix of up to five (5) upper case letters and/or numbers followed
by an underscore (_) character.

 Examples:

 APP_NAME
 CLR_BLACK
 FAILURE

11.2. Coding

Named constants should be used to the maximum extent possible. The use of named
constants will greatly improve the readability and maintainability of the source code. More
importantly, if future modifications are necessary, the constants can be changed in one
location.

The exception to using named constants is to use Enumerations wherever a group of related
constants that represent long integer data types are required.

12. MESSAGE BOXES

12.1. Coding

Message boxes will be used throughout applications to provide feedback to the user and to
solicit a response from the user for specific purposes. Three types of message boxes,
described below, will be used. A fourth type, the query (question) message box, should not
be used. It currently exists in Visual Basic for backward compatibility. All message boxes
will be invoked in code with a message, the appropriate message box parameters, and the

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 27 January 4, 2002

full application name. The message box parameters, using standard Visual Basic constants,
will be concatenated to obtain the required results. The MsgBox statement will be used
whenever the user just needs to acknowledge the message by clicking on the OK button.
When the user is presented with multiple options such as with Yes, No, Cancel buttons, the
MsgBox function will be used in order to trap for the return value corresponding to the
button the user selected.

12.1.1. Information Message Box

Information messages should be used to report the results of an action or to provide
feedback to the user that cannot otherwise be provided. An example of what an
information message box should look like, and the code that invoked it, is shown
below:

strMsg = “No records were found to satisfy the query.”

MsgBox strMsg, vbOKOnly + vbInformation, strAppName

12.1.2. Warning Message Box

Warning messages should be used to inform the user that a non-critical action
cannot be performed or an abnormal result or condition occurred. An example of
what a warning message box should look like, and the code that invoked it, is
shown below:

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 28 January 4, 2002

strMsg = “The required file could not be located.”

MsgBox strMsg, vbOKOnly + vbExclamation, strAppName

12.1.3. Critical Message Box

Critical messages should be used to inform the user that a critical action cannot be
performed or an abnormal result or condition occurred that may cause the
application to abort. An example of what a critical message box should look like,
and the code that invoked it, is shown below:

strMsg = “The database connection was lost during processing.”

MsgBox strMsg, vbOKOnly + vbCritical, strAppName

13. DATABASES AND STORED PROCEDURES

13.1. Naming

13.1.1. Tables

13.1.1.1. Table names will be in mixed case, beginning with an upper case letter.

13.1.1.2. Table names will be descriptive.

13.1.1.3. Table names will be the singular form of the object they describe, e.g.,
Part or Supplier.

13.1.2. Fields

13.1.2.1. Field names will be in mixed case, beginning with an upper case letter.

13.1.2.2. Field names will be unique (within any data dictionary in which it
appears).

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 29 January 4, 2002

13.1.2.3. Field names will be stated in the singular.

13.1.2.4. Field names will be stated as a descriptive word or phrase.

13.1.2.5. Field names will contain only commonly understood abbreviations.

13.1.2.6. When naming fields, do not repeat the table name; for example, avoid
having a field called EmployeeLastName in a table called Employee.

13.1.2.7. Field names will use a capital letter to identify each word of the name-
phrase, for example LastName.

13.1.2.8. Do not incorporate the data type in the name of a column. This will
reduce the amount of work needed should it become necessary to
change the data type later.

13.1.3. SQL Server Stored Procedures

13.1.3.1. Do not prefix stored procedures with sp_, because this prefix is
reserved for identifying system-stored procedures.

13.1.3.2. In Transact-SQL, do not prefix variables with @@, which should be
reserved for truly global variables such as @@IDENTITY.

13.1.3.3. Variables, functions and stored procedure names should follow the
Visual Basic naming conventions outlined in this document to the
greatest extent possible.

13.2. Coding

13.2.1. Tables and Fields

13.2.1.1. Tables will contain a primary key of type long integer that is unique and
meaningless.

13.2.1.2. When other tables use this key as a foreign key, the field name will be
identical to the primary key field name. For example, PartID is the
primary key in the Part table. In the SupplierPart table, the foreign key
will be PartID.

13.2.1.3. All tables will contain the User ID of the user who last saved the record.
The field name for this field will always be UserID.

13.2.1.4. All tables will contain the timestamp of the last update. The field name
for this field will always be TimeStamp.

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 30 January 4, 2002

13.2.1.5. When writing SQL statements, use all uppercase for keywords and
mixed case for database elements, such as tables, columns, and views.

13.2.1.6. Put each major SQL clause on a separate line so statements are easier
to read and edit, for example:

SELECT FirstName, LastName
FROM Customers
WHERE State = ‘WA’

13.2.1.7. Use RETURN statements in stored procedures to help the calling
program know whether the procedure worked properly.

13.2.1.8. Never use SELECT *. Always be explicit in which columns to retrieve
and retrieve only the columns that are required.

13.2.1.9. Refer to fields implicitly; do not reference fields by their ordinal
placement in a Recordset.

13.2.1.10. Use stored procedures in lieu of SQL statements in source code to
leverage the performance gains they provide.

13.2.1.11. Use a stored procedure with output parameters instead of single-record
SELECT statements when retrieving one row of data.

13.2.1.12. Verify the row count when performing DELETE operations.

13.2.1.13. Perform data validation at the client during data entry. Doing so avoids
unnecessary round trips to the database with invalid data.

13.2.1.14. Avoid using functions in WHERE clauses.

13.2.1.15. If possible, specify the primary key in the WHERE clause when
updating a single row.

13.2.1.16. When using LIKE, do not begin the string with a wildcard character
because SQL Server will not be able to use indexes to search for
matching values.

13.2.1.17. Use WITH RECOMPILE in CREATE PROC when a wide variety of
arguments are passed, because the plan stored for the procedure might
not be optimal for a given set of parameters.

13.2.1.18. Stored procedure execution is faster when you pass parameters by
position (the order in which the parameters are declared in the stored
procedure) rather than by name.

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 31 January 4, 2002

13.2.1.19. Use triggers only for data integrity enforcement and business rule
processing and not to return information.

13.2.1.20. After each data modification statement inside a transaction, check for an
error by testing the global variable @@ERROR.

13.2.1.21. Use forward-only/read-only recordsets. To update data, use SQL
INSERT and UPDATE statements.

13.2.1.22. Never hold locks pending user input.

13.2.1.23. Use uncorrelated subqueries instead of correlated subqueries.
Uncorrelated subqueries are those where the inner SELECT statement
does not rely on the outer SELECT statement for information. In
uncorrelated subqueries, the inner query is run once instead of being run
for each row returned by the outer query.

13.3. Commenting

13.3.1. Tables and Fields

13.3.1.1. Descriptions of the purpose of each table and field will be maintained.
Table descriptions should include the source of the data, if applicable,
and what the data represents.

13.3.1.2. Field information should include any restrictions on the size, format or
valid values in the field.

13.3.2. Stored Procedures

13.3.2.1. Stored procedures should follow the same commenting standards as
Visual Basic code, with modifications made only as required by the
development environment.

14. ACTIVE SERVER PAGES

14.1. Naming

14.1.1. General

Scripting languages are “loosely typed” and, consequently, all variables used in
script have a Variant data type. In addition, script is written directly into the HTML
code behind a Web page and there are no modules used to contain code as there
are in VBA and other strongly typed languages. Finally, scripting languages do not
require that you expressly declare variables before you use them.

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 32 January 4, 2002

Given these unique characteristics, does it still make sense to talk about a naming
convention in the context of writing script? Absolutely!

The naming conventions and other coding guidelines discussed here apply just as
well to script in an HTML page as they do to VBA code in an Office application, or
to VB code. The benefits associated with writing reusable, understandable, and
maintainable code can be realized whether you are writing script or VB code. In
fact, there is probably more work to be done persuading script developers to pay
attention to issues of code reuse and maintainability. There are just as many benefits
to writing solid script as there are to writing solid code.

14.1.2. Use Visual Basic Naming Standards

Because ASP technology relies on scripting engines to do its work, and because of
the loosely typed nature of script, naming conventions have been somewhat fuzzy.
In strongly typed languages, variables are declared as their actual type. When using
ASP technology, it’s common practice to declare your variables in ASP code the
way they should be treated, rather than their actual data type. For example, when
working with Visual Basic® Scripting Edition (VBScript), you would declare your
flag for success as blnIsSuccessful (bln for Boolean) rather than varIsSuccessful
(var for Variant), even though all VBScript variables are Variants.

14.1.3. Declare All Variables

In order to prevent errors, all variables will be declared before being used.

14.1.4. Scope and Usage Prefixes for VBScript

Even though script is written directly into the HTML code of a Web page, questions
of visibility and lifetime are still important. Variables and constants declared within a
procedure are local to that procedure and have a lifetime that lasts only so long as
the script within the procedure is executing.

Variables and constants declared in script outside a procedure are visible to any
script contained in the current HTML page. These variables have the equivalent of
the module-level scope described earlier. Variables and constants declared in
VBScript by using the Public keyword are visible to all script in the current HTML
page and to all script in all other currently loaded pages. For example, if you had an
HTML page that contained multiple frames designated by a <FRAMESET> tag
pair, a variable or constant declared with the Public keyword would be visible to all
pages loaded within all the frames specified by the <FRAMESET> tag. To clarify
the scope of a given variable, all variables will be declared with a scope prefix,
where appropriate:

Prefix Description

g_ Created in the Global.asa.

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 33 January 4, 2002

m_ Local to the ASP page or in an Include file.

(no prefix) Non-static variable, prefix local to procedure

14.2. Coding

14.2.1. Microsoft Standards Adopted

Microsoft’s ASP Conventions, developed by the IIS Resource Kit Team, Posted
March 17, 1998, are adopted by, and considered part of these standards. These
conventions are available on the Microsoft Developer Network at
http://msdn.microsoft.com/workshop/server/asp/aspconv.asp. These conventions
were adapted from Appendix B, “ASP Standards” of Internet Information Server
Resource Kit published by Microsoft Press, 1998.

Microsoft’s ASP Guidelines, dated December 27, 1999, written by J.D. Meier,
which originally appeared in the MSDN Online Voices “Servin’ It Up” column are
also incorporated as part of this document. The naming conventions outlined in
section 14.1 are derived from this document.

14.2.2. Tag and Attribute Formats

When writing HTML, establish a standard format for tags and attributes, such as
using all uppercase for tags and all lowercase for attributes. As an alternative,
adhere to the XHTML specification to ensure all HTML documents are valid.
Although there are file size trade-offs to consider when creating Web pages, use
quoted attribute values and closing tags to ease maintainability.

14.2.3. Keep Blocks of Script Together

In ASP, use script delimiters around blocks of script rather than around each line of
script or interspersing small HTML fragments with server-side scripting. Using
script delimiters around each line or interspersing HTML fragments with server-side
scripting increases the frequency of context switching on the server side; this
hampers performance and degrades code readability.

14.3. Commenting

You add comments to an HTML page by wrapping them in comment tags. The HTML
element for a comment is the <!-- and --> tag pair. At a minimum, add comments to
document the HTML where necessary. Use an introductory (header) comment to document
each subroutine and function in the HTML page. In VBScript, comments are indicated by
an apostrophe (‘) character.

Comments serve an additional purpose when they are used in script in an HTML file.
Browsers will ignore any unrecognized HTML tag. However, if the script tags are ignored,
the browser will attempt to render the script itself as plain text. This is rarely the behavior

Visual Basic 6.0 Development Standards and Guidelines

Programming Standards.doc 34 January 4, 2002

you want. The correct way to format script so that older browsers will ignore both the script
tags and the script itself is to wrap your script (but not the script tags) in the <!-- and -->
comment tags. If you are using VBScript, you will need to use the apostrophe character to
add comments to script that is nested within the <!-- and --> comment tags. The following
example uses both forms of comment tags:

<SCRIPT LANGUAGE=“VBSCRIPT”>
<!--
 Option Explicit

 Sub UpdateMessage()
 ‘ This procedure calls code in a scriptlet to get
 ‘ values for the current day, month, and year, and then
 ‘ uses the innerHTML property of a <DIV> tag to
dynamically
 ‘ display those values on the page.

 .
 .
 .
-->
</SCRIPT>

